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the Dutch Organization for Scientific Research (N.W.O.) for financial support. Corre-
spondence to: alucas@econ.vu.nl, Pieter.Klaassen@nl.abnamro.com, spreij@wins.uva.nl,
or sstraetmans@econ.vu.nl.

‡Dept. Finance and Financial Sector Management, Vrije Universiteit, De Boelelaan
1105, NL-1081HV Amsterdam, the Netherlands

§Tinbergen Institute Amsterdam, Keizersgracht 482, NL-1017EG Amsterdam, the
Netherlands

†ABN-AMRO Bank NV, Financial Markets Risk Management, P.O.Box 283, NL-
1000EA Amsterdam, the Netherlands

¶Korteweg-de Vries Institute, University of Amsterdam, Plantage Muidergracht 24,
NL-1018TV Amsterdam, the Netherlands



Proof of Theorem ??: Along the lines of the previous proof, we have to consider
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The first step is to prove that the events inside the square brackets are disjoint. To see
this for u1 ↓ 0, let G1, G2 ∈ G with G1 6= G2. Consider u1 arbitrarily small and a region
for Y such that for j = 1, 2,
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As there is no subset Gs
2 of G2 such that the inequality (2) is also satisfied for Gs

2, there
must be a constant k > 0 such that
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in the region for Y considered. This, however, contradicts the definition of π∗.
We now have for u ↓ 0,
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Define aj = s/
√

1 − R̂2
j and bj = |R̂j |v̂j/

√
1 − R2

j , and λ̂j = λj π̂j . Then the proba-
bilities inside the sum in (3) simplify to
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Now split Y in polar coordinates, Y = Rθ, with R2 a χ2
m variate, and θ uniform on a

hyperglobe. The variates R and θ are independent. Now rewrite (4) as
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Define Φ̄(x) = 1 − Φ(x). Then rewrite (5) as
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Now first consider the probabilities inside the integral. Define Θ as the set θ’s for
which b>j θ < 0 for all j ∈ G. Note that Θ constitutes the only set of θ’s of interest. For
other θ’s, the probability inside the integral equals zero for u1 ↓ 0.

Next, make a subdivision of Θ into Θ1, . . . ,Θm, such that we have |b>j θ| < |b>i θ| for
all i 6= j and θ ∈ Θj . The Θj ’s are disjoint. Therefore, we can rewrite (6) as
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Simplify the probability inside the integral as

P


R2 >




Φ−1
(
u1/λ̂j

)
+ aj

b>j θ




2
∣∣∣∣∣∣∣
θ


 . (8)

From (6.5.4) and (6.5.32) in Abramowitz and Stegun (1970) we have
∫ ∞

x

e−tta−1dt = xa−1e−x(1 + O(x−1))

for x → ∞. Then from (26.4.19) from Abramowitz and Stegun it follows that for large x
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(1 + O(x−2)).

We also have
exp(−Φ−1(x)2/2) ≈ x · L(x)

for x ↑ ∞. Combining all these results and using the independence of R and θ, we can
approximate (asymptotically) (8) by

(
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Again combining all results, we have for u1 ↓ 0
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As we are only interested in
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,

if follows from (10) that
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where, to be precise, Θj = Θj(G).
Remark: It is only a visual illusion that this result does not seem to nest the result for
homogenous vj . Indeed, there is a min over j rather than the max derived in the previous
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theorem. However, consider the case of homogenous vj . In that case, we can simplify to
a one-factor model by considering v>Y instead of Y . Note that θ can only be 1 or −1
now. Using the proof of the present and the previous theorem, it is easy to see (focus
for example on the case m = 2) that only one of the Θj ’s will be non-empty, and this
non-empty Θj will contain either only 1 or only −1. The non-empty Θj is characterized
by precisely that j for which |bj | is at its minimum, or (1 − R̂j)2/R̂2

j is at its maximum,
see just above (7). So the minimum over j in (11) is correct, but one has to bear in mind
that several of the Θj(G)’s may be empty. We can easily accomodate this by defining the
ess inf over an empty set to be +∞.

Note that (11) can be simplified further. Define

Θ∗(G) = ∪j∈GΘj(G),

then the minimum over j and the infimum over θ can be integrated. Note that conditional
on a θ ∈ Θ∗, j = j(θ) is determined by the smallest |b>j θ|, i.e., by the maximum (b>j θ)−2.
Therefore, we have an equivalent expression for (11), namely
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G∈G

ess inf
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. (12)

This completes the proof.

4


