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The fork-join queue

Model
Poisson (λ) arrivals;

an arriving job splits in two
subjobs;

two independent single server
queues;

exponential service times with
rate µ1 and µ2, resp;

for stability λ < min(µ1, µ2).

Folklore application: two bathrooms, one for men and one for women,
and arrivals of couples.

Original motivation: machine with parallel processors (Hahn&Flatto
1984).

More general: allow individual arrivals (Wright 1992; Shwartz-Weiss
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The rare event

{S(k) = (S1(k),S2(k)) : k = 0,1, . . .}
is the discrete-time Markov chain
analogon of the fork-join queue by
embedding at jump times;
S(k) represents the backlogs at the
queues.

Problem
Estimate by simulation:

γn(x, y,T) = P(S1(nT) ≥ ny1 or S2(nT) ≥ ny2|S(0) = nx),

for fixed scaled initial state x = (x1, x2) ∈ R2
+, fixed scaled threshold

y = (y1, y2) ∈ R2
+, fixed scaled horizon T > 0, and parameter n→∞.
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The rarity set

The scaled set of interest:

D = {η ∈ R2
+ : η1 ≥ y1 or η2 ≥ y2},

i.e.
γn(x, y,T) = P (S(nT)/n ∈ D|S(0) = nx) .

The difficulty for importance sampling is twofold:

(i). the rarity set is not convex (Dupuis&Wang 2007);

(ii). the rarity set cannot decomposed in two disjoint sets such that
the separate probabilities are estimated by efficient importance
sampling estimators (Glassermann&Wang 1997).
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A sample path of the fork-join queue

The blue arrow indicates the ‘natural’ drift.
We show the transition rates; for the discrete-time Markov chain these
are normalized to probabilities.
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Face-homogeneous random walk

The fork-join queue is a
face-homogeneous
random walk on Z2

+

with four faces.

The transition probabilities ps,s+d are constant for s in the same face FΛ.
We might associate a random walk (SΛ(k))∞k=0 with jump variable XΛ

with probabilities pΛ(j) .= ps,s+j .
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A sample path after change of measure

The idea of the importance sampling scheme: until a certain time nτ it
follows the original transition probabilities.

From this time on, the transition probabilities are changed, but within a
face they are constant, i.e., state-independent.
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Importance sampling scheme

Our importance sampling scheme will be a mixture of two sets of
exponentially shifted jump probabilities of the jump variables XΛ.

For any θ ∈ R2, the θ-shifted jump XθΛ has jump probabilities

pθΛ(j) = e〈θ,j〉−ψΛ(θ)pΛ(j),

where ψΛ(·) is the log moment generating function of jump variable XΛ.

This gives us a set of 4 jump (or transition) probability densities.

We have two of such sets, and before we simulate a sample path, we
choose randomly a set.
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Sample path large deviations

Define continuous processes (S[n](t))0≤t≤T, n = 1,2, . . ., by scaling:

S[n](t) = S(nt)/n for t = 0,1/n,2/n . . . ,T,

and linear interpolation in the other points.

Consider absolute continuous functions φ : [0,T] → R2
+. Then

(Ignatiouk 2005)

− lim
ε↓0

lim
n→∞

1
n

log P

(
sup

0≤t≤T

∣∣∣S[n](t)− φ(t)
∣∣∣ < ε

)
=
∫ T

0
`Λ(φ(t))(φ

′(t)) dt
.= I(φ),

where `Λ : R2 → [0,∞] are so-called locate rate functions (see
forthcoming slides).
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Sample path large deviations (cont’d)

Notice that for the fork-join queue problem

γn(x, y,T) = P (S(nT)/n ∈ D|S(0)/n = x) = P
(

S[n] ∈ E
)
,

where E is an appropriate set of absolute continuous paths
φ : [0,T] → R2

+ with specifically φ(0) = x and φ(T) ∈ D (the rarity set).

Let Ẽ ⊂ E be the subset of piecewise linear paths of the following form.

φ = φτ,v: it follows the natural drift until time τ and then it goes
straight at constant speed v = φ′(t) to a point in the rarity set
D.

One can show that

lim
n→∞

1
n

log P
(

S[n] ∈ E
)

= lim
n→∞

1
n

log P
(

S[n] ∈ Ẽ
)

= −I(Ẽ),

where I(Ẽ) = infτ,v I(φτ,v), and I(φτ,v) = (T − τ)`Λ(v) assuming that the
second part of the path runs entirely in face FΛ.
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The local rate functions

The local rate function `Λ(v) is the convex conjugate of a certain
convex function ψ : R2 → R:

`Λ(v) = sup
θ∈R2

(〈θ, v〉 − ψ(θ)) .

It can be determined numerically via the method in (Ignatiouk 2001).

The optimizer θv is called the optimal shift factor associated with speed
v.

When θv is used to exponentially shift the jump probabilities of the
internal jump variable X{1,2}, the speed vector v corresponds with the
drift of the shifted jump variable Xθv

{1,2}, thus restricted for being a
convex combination of the jumps (−1,0), (0,−1), (1,1).

Clearly, the speed vectors in the boundary faces F{1} and F{2} are
restricted to be 0 in the perpendicular direction and between −1 and 1
in the parallel direction. (They do not correspond with drifts!)

Denote by VΛ the set of feasible speed vectors v in face FΛ.
Importance sampling simulation of the fork-join queue 11 / 17

The paths with constant speed

We restrict to starting state x = (0,0).

Consider paths that stay in 0 during τ time units.

Let VΛ(τ) be the set of feasible speed vectors v in face FΛ such that
(T − τ)v ∈ D, i.e.,

VΛ(τ) = {v ∈ VΛ : φτ,v ∈ Ẽ}.

Hence, there is a one-to-one correspondence

Ẽ ↔
⋃
τ≥0

V{1,2}(τ) ∪
⋃
τ≥0

V{1}(τ) ∪
⋃
τ≥0

V{2}(τ)

= V{1,2}(0) ∪ V{1}(0) ∪ V{2}(0) .= V(0).
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Efficient importance sampling

The idea is to choose (better: find) a set of speeds v(1), . . . , v(m) and
associated optimal shift factors θ(1), . . . , θ(m), such that

V(0) ⊂
m⋃

i=1

H(v(i)),

where
H(v) = {w ∈ V(0) : 〈θv,w〉 ≥ 〈θv, v〉}.

Then, any mixture importance sampling scheme with exponentially
shifted probability densities using shift factors θ(1), . . . , θ(m) is
asymptotically optimal (Bucklew 1990, 2004).

Importance sampling simulation of the fork-join queue 13 / 17

Example

λ = 1, µ1 = 1.5, µ2 = 2, x = (0,0), y = (1,1.2),T = 10.

We were able to find a solution of two speed vectors such that

V(2) .=
⋃
τ≥2

V{1,2}(τ) ∪
⋃
τ≥2

V{1}(τ) ∪
⋃
τ≥2

V{2}(τ) ⊂ H(v(1)) ∪H(v(2)).

We mix them 0.8 (red path) and 0.2 (blue path).
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Example (cont’d)

Results for scalings n = 25–500with sample size k = 50000for plotting
the relative half width of the 95% confidence interval for estimator γ̂n,

RHW = 1.96
√

Var[γ̂n]/E[γ̂n],

and ratio RAT = logE[(γ̂n)2]/ logE[γ̂n].
(efficient estimators have RAT that converge to 2).
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Conclusion and further research

We have developed an importance sampling scheme which is a
mixture of two time-dependent (state-independent) exponentially
shifted densities.

Excellent simulation results.

Need to prove that using V(2) in stead of V(0) still gives
asymptotical optimality. (The large deviations asymptotic still
holds.)

Further investigations include other starting points, and other
algorithms, for instance with mixing transition probabilities that
depend on state and time.
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