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Introduction

v

Given a directed connected graph G = (V, .A) with |V| = n nodes.

v

Problem is to compute the number of Hamilton cycles HC(G).

v

This is a #P-complete counting problem (Valiant 1979).

v

That means the counting equivalent of the NP-complete complexity of the decision
problem.



Recall Hamilton Cycles




Relation to Rare Events

> Let #(G) the set of all paths in G.

» Let 57 (G) the set of all Hamilton cycles in G.

» Note that 72 (G) C Z(G).

» Consider the uniform probability model on Z(G).
» Then

_1#©)
17(G)]

HC(G) = |#(G)| % |2(G)| = P(U € #(G)) x |2(G)|.

» Suffices to compute the probability P(U € J#(G)) assuming the size of Z(G) is
known.



In

This Talk

Direct and undirected graphs.

Randomized algorithms.

Random graphs.

Importance sampling based on myopic rules.
Importance sampling based on oracle knowledge.

Complexity issues.



(Randomized) Approximate Counting

» A randomized algorithm produces a random output Xg.
» E.g., a Monte Carlo simulation.
» Unbiased E[Xs] = HC(G).
> (e, 0)-approximation if
P((1 - ¢)HC(G) < Xg < (1 4+ €)HC(G)) > 1 — 4.

» Objective (Karp&Luby 1983): algorithm is FPRAS fully polynomial randomized
approximation scheme.

» Meaning that (e, §)-approximation is obtained in a polynomial running time in n,
e !,and logé~'.



Independent Samples

v

Consider indeed a Monte Carlo algorithm.

v

Execute N i.i.d. replications of the algorithm.

v

Compute the sample average estimator.

v

Apply Chebyshev’s inequality.

v

Required sample size for (¢, d)-approximation (6 = 1/4) is

_ EXg .
N=0 <62<1E[x661>2> ’

» Let n — oo (size of vertex set).

A Monte Carlo algorithm would be FPRAS if its relative error E[X2]/(E[Xs])? is
bounded by a polynomial function in n.




Algorithm: OSLA

» Randomized algorithm, called one-step-look-ahead.

» Construct a path from node to node.

» Start at node 1.

» Say current path of length 7 of distinct nodes: (1,v,,...,v).

» Remaining nodes R, = V' \ {1,va,...,v}.

» Let N(v;) be the ‘neighbours’ of node v; (in the original graph).
» Choose v, randomly from N(v,) N R;.

» Continue until either r = nor N(v;) N R; = 0.

» |f t = n, set R, = {1} for completing a cycle.

> Return Xg =TT, [IN(v) N R|.



OSLA is Unbiased

Recognize OSLA as an importance sampling simulation.

Conclude unbiasedness: E[X] = HC(G).




OSLA is not FPRAS

» Consider the graph G with n nodes and n x n adjacency matrix

0o 1 1 1 1
0 0 1 1 1
0 0
A= .
o o0 o0 o0 --- 1
1 0 0 0 --- O
» G has a single Hamilton cycle 7 = (1,2,...,n,1).

» InOSLA: E[Xg] = I; E[X2] = (n — 1)L

Relative error of OSLA estimator is not polynomially bounded.




Are There FPRAS Algorithms?

» No, not generally, unless RP=NP.

» Special cases:
e some random digraphs (Frieze et al 1992);

o dense undirected graphs (Dyer et al 1994);
e random directed graphs (Rasmussen 1994);
e random regular graphs (Frieze et al 1997);

o dense directed graphs (Zhang et al 2011);



Randomization

v

Consider counting Hamilton cycles in random graphs.

G(n,p) model introduced by Erdos & Renyi (1959).
o vertex set V of fixed size n;

v

e arc set A;

e each of n(n — 1) possible arcs is included with probability p independently.

» Denote G, the set of all directed graphs of n vertices.

v

Probability measure Pg,.») ON Gn.



First Analysis

» In this randomization model the expected value of the OSLA estimator E[X]
becomes a (random) conditional expectation.

» Notation: E[X|G,].

» Calculus to show
n—1
E(g, » [EXIG] = E(g, »X] = p[[(p) = p"(n — 1)!
r=1
n—1

E(g, ) [EX*|G:]] = B, » X =p"(n = D! T] (1 4+ (= 1)p).

r=1

OSLA is logarithmically efficient for random graphs; i.e.,

log E X2
liminf (€ E@nn X > 1.
n—roo ZIOgE(gnaI’)[X]




What About FPRAS?

Denote the (random) relative error

_ B9
(BIXIG.)?

n

FPRAS with high probability (whp) for random graphs means

nE}IIolo P g, ») (Rx is bounded by polynomial in n) = 1.




A Weaker Condition

We say that an algorithm is a subexponential randomized approximation scheme
(SRAS) whp if for any n > 0,

: 1
Jim P, p) (5 logRy > ) = 0.

Eguivalently 1 logR, 5o.

OSLA satisfies SRAS whp for random graphs.




Proof

» Denote X
_ Bg,pnX]

n — 2 .
(B(g,.pn X1)
Then lim, .0 + log s, = 0.
» Markov inequality:

E(g, ) [; 108 Ra]

P (g, ) (5 logRy > 1) < .,

Jensen’s inequality and Delta method:

v

1 1 1
E(G, ) [n 10gR] < 7 g E(g, ) [Ra] < 5, log fin.



Hllustration
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This is a plot of
1
P (; log R, > x)

for n = 40, 60, ...,100 and

0 < x < 0.12. For each n, 500
random graphs from the DRG
model. Each instance was
simulated 200 times by OSLA.
The graphs in the figure are the
empirical cdf’s of the 500
estimates of (1/n)logR,.



What about Undirected Graphs?

» Adapt the randomization model and OSLA algorithm (straigtforwardly).
» We now get
E(g,.p) [EXIG:]] = E(g, ) X] ~ p"(n = 1)!

n—1

E(g, » [EX*1G]] = E(g, » X ~p"(n — D] (1+ (r— 1)p),

r=1

forn — co.

OSLA is logarithmically efficient for random undirected graphs.
OSLA satisfies SRAS whp for random undirected graphs.




Using an Oracle

» Randomized algorithm, also called n-step-look-ahead.

» Consider the directed graph case.

» Construct a path from node to node.

» Start at node 1.

» Say current path of length 7 of distinct nodes: (1,v,,...,v).

> Let R, be the remaining nodes and N(v;) are the neighbours of v;.

» Ask the oracle for each node w € N(v;) N R; whether the path (1,v,,..., v, w) can
be completed to an Hamilton cycle.

» Denote W; for the ‘yes’ nodes.
» Choose randomly one of the ‘yes’ nodes.
» Continue until a completed cycle has been constructed.

> Returny =TJ, |[Wi|.



Hllustration

H(G) = {my, m, w3} with

= (1,2,3,4,51); X =8
m = (1,2,4,3,5,1); X = 8&;
773_(175747 )2, 1)7X 2

Gives
E[X] = E[Y] = HC(G) =

and

Var[X] = 9; Var[Y] = 1.



Analysis

A Hamilton path from node s to node ¢ is any path from s to ¢ that visits all nodes in the
graph once. Denote by ., (p) the probability that there is at least one Hamilton path in a
random graph with » nodes in the random graph model.

We now get

E(Gy.p) [E[YIG:]] = E(g,n¥Y] =p"(n—1)!
n—1

E (g, [E[YGi]] = Eg, Y] ~p"(n = DT (14 (r = Dpprta (),

r=1

for n — oo.



Complexities

nSLA is logarithmically efficient for random graphs.
nSLA satisfies SRAS whp for random graphs.
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