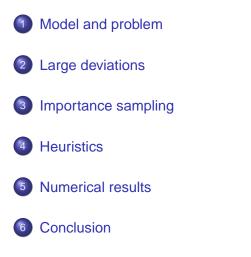
The cross-entropy method for importance sampling simulation of the infinite-server queue

Ad Ridder

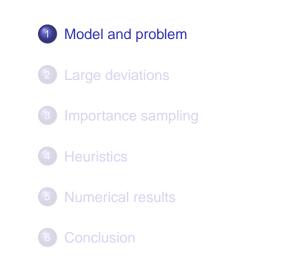
Department of Econometrics Vrije Universiteit Amsterdam

INFORMS Applied Probability, Eindhoven, 2007

Outline



Outline



The $M/G/\infty$ queueing model

- Poisson λ arrivals.
- General service time with cdf *F* and mean $1/\mu$.
- Infinitely many servers: upon arrival service starts immediately.
- X(t) is number of busy servers at time $t \ (t \ge 0)$.
- X(0) = 0.

• First passage times:

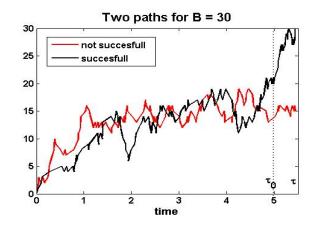
 $T(\ell) := \inf\{t \ge 0 : X(t) \ge \ell\}, \ \ell = 1, 2, \dots$

• Problem: given level *B* and times τ_0, τ ($0 \le \tau_0 < \tau$) find

$P(T(B) \in (\tau_0, \tau]).$

- Assumptions: *B* is large and $\lambda/\mu < B$.
- $t \to \infty$ gives the stationary regime where $X(\infty)$ is Poisson with mean λ/μ .

A plot of two realisations



The *n*-systems

• Let $\lambda = \lambda_n$ and $B = B_n$ (n = 1, 2, ...) grow proportionally to n according to

$$\lambda_n = n\gamma, \quad B_n = nb,$$

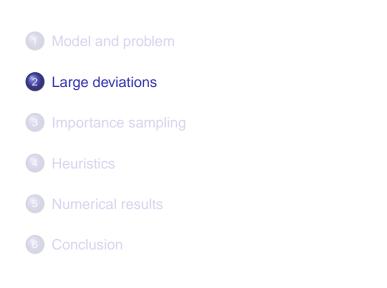
where γ and b fixed, and satisfy $\gamma/\mu < b$.

- We have for each *n* an infinite server system.
- $X_n(t)$ are the occupancies, $T_n(\ell)$ the first passage times in the *n*-system.
- The probability becomes

$$p_n := P\Big(T_n(nb) \in (\tau_0, \tau]\Big)$$

• We set (w.l.o.g.) *b* = 1

Outline



Proof

Theorem

 $-\lim_{n\to\infty}\frac{1}{n}\log p_n = \rho(\tau) - b\log\rho(\tau) + b\log b - b,$ where $\rho(t) = \gamma \int_0^t (1 - F(x)) dx.$ Step 1. Well-known that for any t > 0 (recall $X_n(0) = 0$) $X_n(t) \stackrel{d}{=} \sum_{i=1}^n X^{(i)}(t)$, where $X^{(1)}(t), \dots, X^{(n)}(t)$ are i.i.d. with Poisson- $\rho(t)$ distribution.

LD proof (cont'd)

Step 2. Apply Cramér's Theorem:

$$\lim_{n\to\infty}\frac{1}{n}\log P(X_n(t)\geq nb)=\lim_{n\to\infty}\frac{1}{n}\log P\left(\frac{1}{n}\sum_{i=1}^n X^{(i)}(t)\geq b\right)=-I_t(b),$$

where the large deviations rate function

$$I_t(b) = \sup_{\theta} \left(\theta b - \psi_t(\theta) \right),$$

with logarithmic moment generating function

$$\psi_t(\theta) = \log E \left[\exp(\theta X^{(\cdot)}(t)) \right]$$

Doing the calculus gives $I_t(b)$ the expression of the Theorem.

LD proof (cont'd)

Step 3. Define

$$A_n = igcup_{t \le au_0} \{X_n(t) \ge nb\}, \quad B_n = igcup_{ au_0 < t \le au} \{X_n(t) \ge nb\}.$$

Thus, $p_n = P(A_n^c \cap B_n)$. Upper bound:

$$\limsup_{n\to\infty}\frac{1}{n}\log p_n=\limsup_{n\to\infty}\frac{1}{n}\log P(A_n^c\cap B_n)$$

$$\leq \limsup_{n \to \infty} \frac{1}{n} \log P(B_n) = -\inf_{\tau_0 < t \leq \tau} I_t(b) = -I_{\tau}(b),$$

applying Laplace's principle and that $I_t(b)$ decreases (as a function of *t*).

LD proof (cont'd)

Step 4. Lower bound.

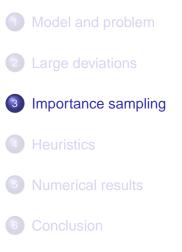
$$p_n = P(A_n^c \cap B_n) = P(B_n) - P(A_n \cap B_n)$$

$$\geq P(B_n) - P(A_n) = P(B_n) \left(1 - \frac{P(A_n)}{P(B_n)}\right).$$

And

$$\begin{split} \liminf_{n \to \infty} \frac{1}{n} \log p_n &\geq \liminf_{n \to \infty} \frac{1}{n} \log P(B_n) \left(1 - \frac{P(A_n)}{P(B_n)} \right) \\ &\geq \liminf_{n \to \infty} \frac{1}{n} \log P(B_n) + \liminf_{n \to \infty} \frac{1}{n} \log \left(1 - \frac{P(A_n)}{P(B_n)} \right) \\ &\geq -I_{\tau}(b) + \liminf_{n \to \infty} \frac{1}{n} \log \frac{1}{2} = -I_{\tau}(b). \end{split}$$

Outline



Importance sampling

- Simulation of the infinite server model for estimation the probability.
- Importance sampling because level crossing is a rare event.
- Estimator based on N runs

$$Y_n^* := \frac{1}{N} \sum_{i=1}^N L(\{X_n^{(i)}(t), 0 \le t \le \tau\}) \mathbf{1}\{T_n^{(i)}(nb) \in (\tau_0, \tau]\}$$

Exponential servers

In the exponential model we can derive

Done previously for exponential servers

- a sample path large deviations;
- a most likely ('optimal') path to overflow;
- a continuous shift function $\theta^*(t) : [0, \tau] \to \mathbb{R}_{\geq 0}$ such that importance sampling with arrival rates $\lambda e^{\theta^*(t)}$ and service rates $\mu e^{-\theta^*(t)}$ is asymptotically optimal:

$$\lim_{n\to\infty}\frac{\log E[(Y_n^*)^2]}{\log p_n}=2.$$

Algorithm updates all realised services (of present customers) after each jump (arrivals and departures).

Outline

Model and problem

Importance sampling

4 Heuristics

5 Numerical results

6 Conclusion

General service times

No memoryless property: updating of all services is 'impossible'.

The importance sampling algorithm

- The interval $[0, \tau]$ is partitioned in *K* equal subintervals I_k .
- The arrival rate on I_k is λe^{θ_k} .
- The service distribution of arriving customers in *I_k* is an exponentially shifted version of the original *F*, with shift parameter δ_k.
- No updates of service times of the other customers already present; no updates at a departure epoch.

Exponentially shifted distribution

Service time S has cdf F with density f.

Shifting with parameter δ :

$$f^{\delta}(x) = \frac{e^{\delta x} f(x)}{M(\delta)},$$

where $M(\delta)$ normalizing constant (moment generating function).

Denote $\psi(\delta) = \log M(\delta)$. The expectation of *S* with the shifted distribution:

$$E^{\delta}[S] = \psi'(\delta).$$

The importance sampling parameters

Problem : which importance sampling parameters $\theta = (\theta_k)_{k=1}^K$ for arrivals and $\delta = (\delta_k)_{k=1}^K$ for services?

Idea: use the parameters from the exponential model:

$$\theta_k = \theta^*(t_k), \quad \psi'(\delta_k) = e^{\theta^*(t_k)}/\mu,$$

where t_k is the midpoint of the *k*-th subinterval I_k .

And $\theta^*(t)$ is the continuous shift parameter in the exponential model which is available in a closed form expression.

Simulation results

Model: $\gamma = 0.5, E[S] = \mu^{-1} = 1, b = 1, \tau_0 = 5.0, \tau = 5.5$, and

Coxian service times with two phases, and squared coefficient of variation (SCV) 5:

 $S \stackrel{\mathrm{d}}{=} \Delta \mathrm{Exp}(\mu_1) + (1 - \Delta) \left(\mathrm{Exp}(\mu_1) + \mathrm{Exp}(\mu_2) \right),$

where Δ is Bernoulli(*p*).

Erlangian service times with two phases, and SCV 0.5:

$$S \stackrel{\mathrm{d}}{=} \mathrm{Exp}(2\mu) + \mathrm{Exp}(2\mu).$$

After exponential shifting Coxian remains Coxian and Erlang remains Erlang.

Cross-entropy

We shall improve the Coxian case by applying the cross-entropy method for finding the shift parameters.

That is: solve

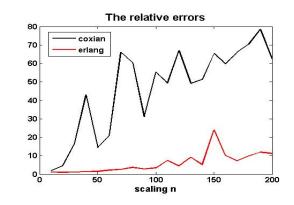
$$\max_{\theta,\delta} E\left[Y_n \log H\left(\{X_n(t), 0 \le t \le \tau\} | \theta, \delta\right)\right],$$

where $Y_n = \mathbf{1}\{T_n(nb) \in (\tau_0, \tau]\}$ indicates the occurrence of the rare event,

and $H(\cdot)$ the likelihood of the sample path when simulating according to the importance sampling algorithm with shift parameters θ and δ .

Plot

Scaling n = 10, 20, ..., 200. K = 20 subintervals. IS-simulation: 50,000 runs. Plot of the relative errors (in %).



Solving the maximum likelihood

Because of the availability of an explicit expression for the likelihood, and by interchanging expectation and differentation, we can solve the first order conditions. For k = 1, ..., K:

$$\frac{\partial}{\partial \theta_k} E[Y_n \log H(\cdot | \theta, \delta)] = 0 \iff \lambda \, e^{\theta_k} = \frac{E[Y_n N_k]}{E[Y_n \sum_{j=1}^{N_k} A_j]},$$

$$\frac{\partial}{\partial \delta_k} E[Y_n \log H(\cdot | \theta, \delta)] = 0 \iff \psi'(\delta_k) = \frac{E[Y_n \sum_{j=1}^{N_k} S_j]}{E[Y_n N_k]}$$

Where N_k is the number of arrivals during subinterval I_k , with corresponding interarrival times A_i and service time S_i .

Cross-entropy algorithm

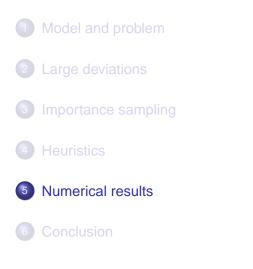
The expectations in the f.o.c. equations are estimated by simulation.

Since they involve the rare event (rv Y_n) we use importance sampling with θ and δ determined in the previous iteration.

Cross-entropy algorithm

- Choose initial $\theta_k^{(0)}$ and $\delta_k^{(0)}$, $k = 1, \dots, K$; i = 0.
- Simulate the infinite server queue $\{X_n(t) : 0 \le t \le \tau\}$ with arrival rates $\lambda \exp(\theta_k^{(i)})$ and shifted service time distributions with parameters $\delta_k^{(i)}$.
- Setimate by importance sampling the expections $E[Y_nN_k]$, $E[Y_n \sum_{j=1}^{N_k} A_j]$, and $E[Y_n \sum_{j=1}^{N_k} S_j]$.
- (a) Find the updated $\theta_k^{(i+1)}$ and $\delta_k^{(i+1)}$.
- Set i = i + 1 and repeat from 2 until convergence.

Outline



Simulation

Same model with scaling n = 50.

K = 20 intervals; 20 CE-iterations of 5,000 samples.

Plots of initial parameters $\theta_k^{(0)}$, $\delta_k^{(0)}$ and after 20 iterations $\theta_k^{(20)}$, $\delta_k^{(20)}$ (as functions of *k*).

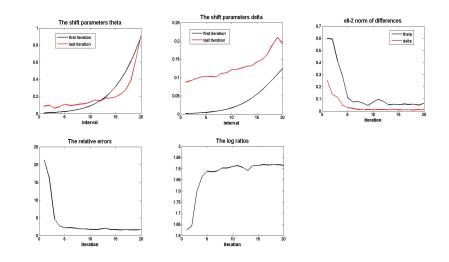
Plot of the 2-norms of the differences of two consecutiove solutions:

 $||\theta^{(i+1)} - \theta^{(i)}||_2, \quad ||\delta^{(i+1)} - \delta^{(i)}||_2.$

After each CE-update we executed an IS simulation with 20,000 samples to estimate the rare-event probability p_n . Plot of the (estimated) relative errors and the (estimated) log ratios of the estimators:

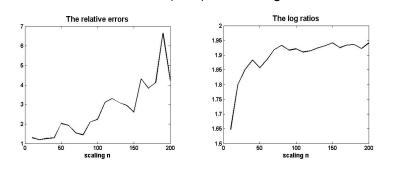
$$RE = \frac{\sqrt{Var[Y_n^*]}}{E[Y_n^*]}, \quad \text{logratio} = \frac{\log E[(Y_n^*)^2]}{\log E[Y_n^*]}$$

Plots for scaling n = 50



Larger scalings

Scaling $n = 10, 20, \dots, 200$: $p_{200} \approx 3 \cdot 10^{-27}$. CE-iterations: \sim 10 to 20; 5000 runs each; IS-simulation: 20,000 runs. Plots of the relative errors (in %) and the log ratios.



Alternative CE algorithms

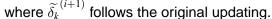
Start with initial parameters all equal to 0. That is: the original Monte Carlo simulation.

Need to adapt the first few iterations to make sure that observations occur.

Lower down the target level *B*. And increase it in each iteration based on the observations of the previous iteration.

2 Use smoothing in the updating rule:

$$\delta_k^{(i+1)} = \alpha \widetilde{\delta_k}^{(i+1)} + (1-\alpha) \delta_k^{(i)}$$



How many CE-iterations?

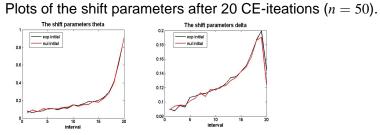
Empirically: in the first iterations of th CE algorithm some of the θ_k and/or δ_k parameters become negative.

Most of the experiments gave all positive parameters within 10 iterations.

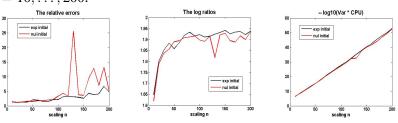
Good performance when all parameters became positive.

Implementation: stop CE updating after a few (for instance 5) iterations with all positive parameters.

Results with the null initial



Plot of the relative errors, log ratios, and efforts for $n = 10, \ldots, 200.$



Heavy-tailed services

Experiments for Pareto with mean 1 and infinite variance:

$$f(x) = \frac{\alpha}{\beta} \left(1 + \frac{x}{\beta} \right)^{-\alpha - 1}$$

,

with form parameter $\alpha = 1.5$ and scale parameter $\beta = 0.5$.

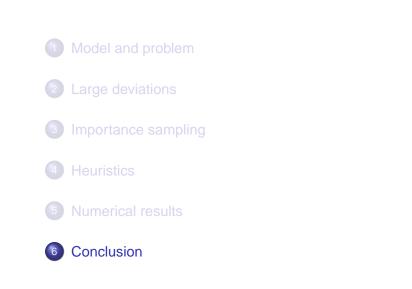
No exponential shifting possible.

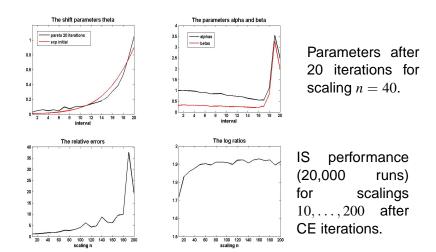
Importance sampling with new densities $Pareto(\alpha_k, \beta_k)$ on subinterval I_k .

Cross-entropy algorithms: (i) updating both parameters; (ii) updating form parameters only; (iii) updating scale parameters only.

Results for (i).

Outline





Conclusion

- A rare event problem in the $M/G/\infty$ queue.
- Large deviations asymptotics.
- Importance sampling algorithm with cross-entropy improvement.
- Algorithm is 'close' to asymptotic optimal.

Plots