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The M/G/∞ queueing model

Poisson λ arrivals.

General service time with cdf F and mean 1/µ.

Infinitely many servers: upon arrival service starts
immediately.

X(t) is number of busy servers at time t (t ≥ 0).
X(0) = 0.



The level crossing problem

First passage times:

T(`) := inf{t ≥ 0 : X(t) ≥ `}, ` = 1,2, . . . .

Problem: given level B and times τ0, τ (0≤ τ0 < τ) find

P
(

T(B) ∈ (τ0, τ ]
)
.

Assumptions: B is large and λ/µ < B.

t →∞ gives the stationary regime where X(∞) is Poisson
with mean λ/µ.

A plot of two realisations

The n-systems

Let λ = λn and B = Bn (n = 1,2, . . .) grow proportionally
to n according to

λn = nγ, Bn = nb,

where γ and b fixed, and satisfy γ/µ < b.

We have for each n an infinite server system.

Xn(t) are the occupancies, Tn(`) the first passage times in
the n-system.

The probability becomes

pn := P
(

Tn(nb) ∈ (τ0, τ ]
)
.

We set (w.l.o.g.) b = 1
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Large deviations

Theorem

− lim
n→∞

1
n logpn = ρ(τ)− b logρ(τ) + b logb− b,

where ρ(t) = γ
∫ t

0 (1− F(x)) dx.

Proof

Step 1. Well-known that for any t > 0 (recall Xn(0) = 0)

Xn(t)
d=
∑n

i=1 X(i)(t), where

X(1)(t), . . . ,X(n)(t) are i.i.d. with Poisson-ρ(t) distribution.

LD proof (cont’d)

Step 2. Apply Cramér’s Theorem:

lim
n→∞

1
n logP(Xn(t) ≥ nb) = lim

n→∞
1
n logP

(
1
n

n∑
i=1

X(i)(t) ≥ b

)
= −It(b),

where the large deviations rate function

It(b) = sup
θ

(θb− ψt(θ)) ,

with logarithmic moment generating function

ψt(θ) = logE
[
exp(θX(·)(t))

]
.

Doing the calculus gives It(b) the expression of the Theorem.

LD proof (cont’d)

Step 3. Define

An =
⋃
t≤τ0

{Xn(t) ≥ nb}, Bn =
⋃

τ0<t≤τ

{Xn(t) ≥ nb}.

Thus, pn = P(Ac
n ∩ Bn).

Upper bound:

lim sup
n→∞

1
n logpn = lim sup

n→∞
1
n logP(Ac

n ∩ Bn)

≤ lim sup
n→∞

1
n logP(Bn) = − inf

τ0<t≤τ
It(b) = −Iτ (b),

applying Laplace’s principle and that It(b) decreases (as a
function of t).



LD proof (cont’d)

Step 4. Lower bound.

pn = P(Ac
n ∩ Bn) = P(Bn)− P(An ∩ Bn)

≥ P(Bn)− P(An) = P(Bn)
(

1− P(An)
P(Bn)

)
.

And

lim inf
n→∞

1
n logpn ≥ lim inf

n→∞
1
n logP(Bn)

(
1− P(An)

P(Bn)

)

≥ lim inf
n→∞

1
n logP(Bn) + lim inf

n→∞
1
n log

(
1− P(An)

P(Bn)

)

≥ −Iτ (b) + lim inf
n→∞

1
n log

1
2

= −Iτ (b).
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Importance sampling

Simulation of the infinite server model for estimation the
probability.

Importance sampling because level crossing is a rare
event.

Estimator based on N runs

Y∗n :=
1
N

N∑
i=1

L({X(i)
n (t),0≤ t ≤ τ})1{T(i)

n (nb) ∈ (τ0, τ ]}.

Exponential servers

In the exponential model we can derive

Done previously for exponential servers
a sample path large deviations;

a most likely (‘optimal’) path to overflow;

a continuous shift function θ∗(t) : [0, τ ] → R≥0 such that
importance sampling with arrival rates λ eθ∗(t) and service
rates µe−θ∗(t) is asymptotically optimal:

lim
n→∞

logE[(Y∗n)2]
logpn

= 2.

Algorithm updates all realised services (of present customers)
after each jump (arrivals and departures).
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General service times

No memoryless property: updating of all services is
‘impossible’.

The importance sampling algorithm

The interval [0, τ ] is partitioned in K equal subintervals Ik.

The arrival rate on Ik is λ eθk.

The service distribution of arriving customers in Ik is an
exponentially shifted version of the original F, with shift
parameter δk.

No updates of service times of the other customers already
present; no updates at a departure epoch.

Exponentially shifted distribution

Service time Shas cdf F with density f .

Shifting with parameter δ:

f δ(x) =
eδxf (x)
M(δ)

,

where M(δ) normalizing constant (moment generating
function).

Denote ψ(δ) = logM(δ).
The expectation of Swith the shifted distribution:

Eδ[S] = ψ′(δ).

The importance sampling parameters

Problem : which importance sampling parameters θ = (θk)K
k=1

for arrivals and δ = (δk)K
k=1 for services?

Idea: use the parameters from the exponential model:

θk = θ∗(tk), ψ′ (δk) = eθ∗(tk)/µ,

where tk is the midpoint of the k-th subinterval Ik.

And θ∗(t) is the continuous shift parameter in the exponential
model which is available in a closed form expression.



Simulation results

Model: γ = 0.5,E[S] = µ−1 = 1,b = 1, τ0 = 5.0, τ = 5.5, and

Coxian service times with two phases, and squared coefficient
of variation (SCV) 5:

S
d= ∆Exp(µ1) + (1−∆) (Exp(µ1) + Exp(µ2)) ,

where ∆ is Bernoulli(p).

Erlangian service times with two phases, and SCV 0.5:

S
d= Exp(2µ) + Exp(2µ).

After exponential shifting Coxian remains Coxian and Erlang
remains Erlang.

Plot

Scaling n = 10,20, . . . ,200. K = 20 subintervals.
IS-simulation: 50,000 runs.
Plot of the relative errors (in %).

Cross-entropy

We shall improve the Coxian case by applying the
cross-entropy method for finding the shift parameters.

That is: solve

max
θ,δ

E
[
Yn logH

(
{Xn(t),0≤ t ≤ τ}|θ, δ

)]
,

where Yn = 1{Tn(nb) ∈ (τ0, τ ]} indicates the occurrence of the
rare event,

and H(·) the likelihood of the sample path when simulating
according to the importance sampling algorithm with shift
parameters θ and δ.

Solving the maximum likelihood

Because of the availability of an explicit expression for the
likelihood, and by interchanging expectation and differentation,
we can solve the first order conditions.
For k = 1, . . . ,K:

∂

∂θk
E[Yn logH(·|θ, δ)] = 0 ⇔ λ eθk =

E[YnNk]
E[Yn

∑Nk
j=1 Aj ]

,

∂

∂δk
E[Yn logH(·|θ, δ)] = 0 ⇔ ψ′(δk) =

E[Yn
∑Nk

j=1 Sj ]

E[YnNk]
.

Where Nk is the number of arrivals during subinterval Ik, with
corresponding interarrival times Aj and service time Sj .



Cross-entropy algorithm

The expectations in the f.o.c. equations are estimated by
simulation.

Since they involve the rare event (rv Yn) we use importance
sampling with θ and δ determined in the previous iteration.

Cross-entropy algorithm

1 Choose initial θ(0)
k and δ(0)k , k = 1, . . . ,K; i = 0.

2 Simulate the infinite server queue {Xn(t) : 0≤ t ≤ τ} with
arrival rates λ exp(θ(i)

k ) and shifted service time

distributions with parameters δ(i)k .
3 Estimate by importance sampling the expections E[YnNk],

E[Yn
∑Nk

j=1 Aj ], and E[Yn
∑Nk

j=1 Sj ].

4 Find the updated θ(i+1)
k and δ(i+1)

k .
5 Set i = i + 1 and repeat from 2 until convergence.
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Simulation

Same model with scaling n = 50.
K = 20 intervals; 20 CE-iterations of 5,000 samples.

Plots of initial parameters θ(0)
k , δ(0)k and after 20 iterations θ(20)

k ,

δ
(20)
k (as functions of k).

Plot of the 2-norms of the differences of two consecutiove
solutions:

||θ(i+1) − θ(i)||2, ||δ(i+1) − δ(i)||2.

After each CE-update we executed an IS simulation with
20,000 samples to estimate the rare-event probability pn. Plot of
the (estimated) relative errors and the (estimated) log ratios of
the estimators:

RE =

√
Var[Y∗n ]
E[Y∗n ]

, logratio=
logE[(Y∗n)2]

logE[Y∗n ]

Plots for scaling n = 50



Larger scalings

Scaling n = 10,20, . . . ,200: p200≈ 3 · 10−27.
CE-iterations: ∼ 10 to 20; 5000 runs each;
IS-simulation: 20,000 runs.
Plots of the relative errors (in %) and the log ratios.

How many CE-iterations?

Empirically: in the first iterations of th CE algorithm some of the
θk and/or δk parameters become negative.

Most of the experiments gave all positive parameters within 10
iterations.

Good performance when all parameters became positive.

Implementation: stop CE updating after a few (for instance 5)
iterations with all positive parameters.

Alternative CE algorithms

1 Start with initial parameters all equal to 0.
That is: the original Monte Carlo simulation.

Need to adapt the first few iterations to make sure that
observations occur.
Lower down the target level B. And increase it in each
iteration based on the observations of the previous
iteration.

2 Use smoothing in the updating rule:

δ
(i+1)
k = αδ̃k

(i+1)
+ (1− α)δ(i)k ,

where δ̃k
(i+1)

follows the original updating.

Results with the null initial

Plots of the shift parameters after 20 CE-iteations (n = 50).

Plot of the relative errors, log ratios, and efforts for
n = 10, . . . ,200.



Heavy-tailed services

Experiments for Pareto with mean 1 and infinite variance:

f (x) =
α

β

(
1 +

x
β

)−α−1

,

with form parameter α = 1.5 and scale parameter β = 0.5.

No exponential shifting possible.

Importance sampling with new densities Pareto(αk, βk) on
subinterval Ik.

Cross-entropy algorithms: (i) updating both parameters; (ii)
updating form parameters only; (iii) updating scale parameters
only.

Results for (i).

Plots

Parameters after
20 iterations for
scaling n = 40.

IS performance
(20,000 runs)
for scalings
10, . . . ,200 after
CE iterations.
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Conclusion

A rare event problem in the M/G/∞ queue.

Large deviations asymptotics.

Importance sampling algorithm with cross-entropy
improvement.

Algorithm is ‘close’ to asymptotic optimal.
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