Importance Sampling Simulation of Queues with Time-Varying Rates

Ad Ridder, Vera Rensink (Vrije University Amsterdam)

StochMod14, Mannheim, June 30-July 2, 2014

Introduction

- Rare event in a queueing model: large queue;
- Estimate efficiently the probability;
- By application of importance sampling algorithms;
- Analysis of the rare event probability (large deviations);
- Analysis of complexity of algorithms;

The Queueing Model: $M_{t} / M / 1$

- Arrivals according to nonhomogeneous Poisson process;

Rate function

$$
\alpha(t)=\lambda+A \sin (2 \pi t / \tau), \quad t \geq 0
$$

- Exponential services with rate μ;
- Single server; infinite waiting room; FCFS;
- $X(t)$ number of customers present at time t;
- Interarrival times U_{1}, U_{2}, \ldots;
- Service durations V_{1}, V_{2}, \ldots;
- Stability: $\lambda<\mu$;

Sequence of Queues

- Parameter $n=1,2, \ldots, n \rightarrow \infty$;
- Sequence $\left\{X_{n}(t): t \geq 0 ; n=1,2, \ldots\right\}$ of $M_{t} / M / 1$ queues;
- Interarrival times:
- $U_{1}^{(n)}, U_{2}^{(n)}, \ldots$;
- Such that U_{1}, U_{2}, \ldots defined by $U_{j}=n U_{j}^{(n)}$ are as on previous slide;
- Service times:
- $V_{1}^{(n)}, V_{2}^{(n)}, \ldots$;
- Such that V_{1}, V_{2}, \ldots defined by $V_{j}=n V_{j}^{(n)}$ are as on previous slide;
- Interpretation: rates are n-times faster;

Rare Event

- Let $X_{n}(t)$ number of customers present at time t in the n-queue;
- Denote

$$
X^{(n)}(t)=\frac{1}{n} X_{n}(t), \quad t \geq 0 ;
$$

Rare Event Problem

Fix \bar{x}, \bar{y}, T; compute the overflow probability

$$
\ell_{n}=\mathbb{P}\left(X^{(n)}(T) \geq \bar{y} \mid X^{(n)}(0)=\bar{x}\right)
$$

for large n.
T is called the overflow horizon.

Equivalent Formulation

- In the orginal (unscaled) $M_{t} / M / 1$ model;

$$
\ell_{n}=\mathbb{P}(X(n T) \geq n \bar{y} \mid X(0)=n \bar{x})
$$

- Scaling is the usual technique for analysis;
- And for showing figures;

Some Numbers
$\lambda=1, A=0.5, \tau=1, \mu=1.5, \quad \bar{x}=0.1, \bar{y}=2.0, T=3.0 ;$

n	$\ell_{n} \approx$
20	$1.9 \mathrm{e}-08$
40	$1.8 \mathrm{e}-15$
60	$2.3 \mathrm{e}-22$
80	$3.1 \mathrm{e}-29$
100	$4.6 \mathrm{e}-36$

Exponential decay;

Reference Model: $M / M / 1$

- Extensively studied;
- Same problem: $\mathbb{P}\left(X^{(n)}(T) \geq \bar{y} \mid X^{(n)}(0)=\bar{x}\right)$;
- Large deviations and most likely paths e.g. in classic work of Shwartz \& Weiss 95;
- Idea is to adapt for $M_{t} / M / 1$;

Most Likely Paths in $M / M / 1$

- Limiting process $x(t)=\lim _{n \rightarrow \infty} X^{(n)}(t)$
- Plot of most likely path [left] and plot of optimal path to overflow at time T [right];
- Top: $T=3$; Bottom $T=9$;

What about $M_{t} / M / 1$?

- First, we use simulation do find empirically the typical paths to overflow;
- Then, we conjecture the optimal paths;
- And give a sketch of proof;
- Next, we apply importance sampling that follows these optimal path to overflow as its average (most likely) path;

Typical Paths in $M_{t} / M / 1$ by Experiment

- Experiment: simulate $M_{t} / M / 1$ queue and plot an average path and plot a typical path to overflow at time $T ; n=10$;
- Top: $T=3$ small overflow horizon; Bottom $T=9$ large overflow horizon;

Conjecture

Now let $n \rightarrow \infty$.

Conjecture

(i). The most likely path satisfies

$$
x(t)=\left(\bar{x}+(\lambda-\mu) t+\frac{A}{2 \pi / \tau}(1-\cos (2 \pi t / \tau))\right)^{+}, \quad t \geq 0
$$

(ii). For small overflow horizon T, the optimal path to overflow satisfies

$$
x(t)=\bar{x}+\frac{\bar{y}-\bar{x}}{T} t+\frac{A e^{\theta}}{2 \pi / \tau}(1-\cos (2 \pi t / \tau)), \quad 0 \leq t \leq T .
$$

(iii). For large overflow horizon T, the optimal path to overflow is concatenation of paths of type (i) and type (ii).

The Plots

- Plot of most likely path and plot of optimal path to overflow at time T;
- Top: $T=3$; Bottom $T=9$;

Sketch of Proof

Most likely path.

- Let $A_{n}(t)=$ number of arrivals in $[0, t] ; D_{n}(t)=$ number of departures;
- $A_{n}(t)$ is Poisson with mean $\int_{0}^{t} n \alpha(s) d s$;
- $A_{n}(t)$ can be considered to be a sum of n IID Poison RV's each with mean $\int_{0}^{t} \alpha(s) d s ;$
- Applying SLLN we get

$$
\lim _{n \rightarrow \infty} \frac{A_{n}(t)}{n}=\int_{0}^{t} \alpha(s) d s ; \quad \lim _{n \rightarrow \infty} \frac{D_{n}(t)}{n t}=\mu \quad(\mathbb{P} \text { a.s. })
$$

- Thus, the scaled queueing processes satisfy for large n

$$
\begin{aligned}
& X^{(n)}(t) \approx\left(\bar{x}+\frac{1}{n}\left(A_{n}(t)-D_{n}(t)\right)\right)^{+} \approx\left(\bar{x}+\int_{0}^{t} \alpha(s) d s-\mu t\right)^{+} \\
& =\left(\bar{x}+(\lambda-\mu) t+\frac{A}{2 \pi / \tau}(1-\cos (2 \pi t / \tau))\right)^{+}, \quad t \geq 0
\end{aligned}
$$

Sketch of Proof (cont'd)

Optimal path to overflow at small overflow horizon;

- The heuristic is that the optimal path to overflow equals the most likely path under a change of measure (COM);
- The COM is the same as for the $M / M / 1$: arrival and service rates

$$
\alpha^{*}(t)=\alpha(t) e^{\theta} ; \quad \mu^{*}=\mu e^{-\theta}
$$

- With e^{θ} equals as in $M / M / 1$ where it is known that

$$
e^{\theta}=\frac{\bar{y}-\bar{x}+\sqrt{(\bar{y}-\bar{x})^{2}+4 \lambda \mu T^{2}}}{2 \lambda T}
$$

- Reason as previous slide that under the COM

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{A_{n}(t)}{n}=\int_{0}^{t} \alpha^{*}(s) d s \\
& =e^{\theta}\left(\lambda t+\frac{A}{2 \pi / \tau}(1-\cos (2 \pi t / \tau))\right) \quad\left(\mathbb{P}^{*} \text { a.s. }\right)
\end{aligned}
$$

Sketch of Proof (cont'd)

- Calculus:

$$
\lambda e^{\theta}-\mu e^{-\theta}=\frac{\bar{y}-\bar{x}}{T} .
$$

- Thus for large n we get

$$
\begin{aligned}
& X^{(n)}(t) \approx \bar{x}+\frac{1}{n}\left(A_{n}(t)-D_{n}(t)\right) \\
& =\bar{x}+\lambda e^{\theta} t+\frac{A}{2 \pi / \tau}(1-\cos (2 \pi t / \tau)) e^{\theta}-\mu e^{-\theta} t \\
& \approx \bar{x}+\frac{\bar{y}-\bar{x}}{T} t+\frac{A e^{\theta}}{2 \pi / \tau}(1-\cos (2 \pi t / \tau)), \quad 0 \leq t \leq T
\end{aligned}
$$

Importance Sampling

- Based on the COM of the previous slide for small overflow horizon;
- Large overflow horizon: regular simulation until a time τ (same as in the $M / M / 1$ queue); COM on $[\tau, T]$;
- Plot the average paths under this COM for $n=100$;

Importance Sampling Estimator

- The (single-run) IS estimator of ℓ_{n} is

$$
L_{n}=W\left(\mathbf{X}^{(n)}\right) \mathbb{1}\left\{X^{(n)}(T) \geq \bar{y}\right\}
$$

- Where $\mathbf{X}^{(n)}$ is the path on $[0, T]$ simulated under COM;
- And where $W\left(\mathbf{X}^{(n)}\right)$ is the associated likelihood ratio;
- The final IS estimator is based om M repetitions:

$$
\widehat{\ell}_{n}=\frac{1}{M} \sum_{k=1}^{M} L_{n}^{(k)}
$$

Performance of IS Estimator

- Demand that estimator is accurate

$$
\mathbb{P}\left(\left|\widehat{\ell}_{n}-\ell_{n}\right|<0.1 \ell_{n}\right)>0.95
$$

- Determine the required sample size M for this;
- From Chebyshevs inequality: $M=O\left(\operatorname{RE}^{2}\left[L_{n}\right]\right)$;
- Where relative error $\operatorname{RE}\left[L_{n}\right]=\sqrt{\mathbb{V a r}\left[L_{n}\right]} / \ell_{n}$.
- Strong efficiency when relative error is bounded;
- Weak efficient when relative error is subexponential (e.g. polynomial);
- NB: regular Monte Carlo has exponential relative error.

Numerical Results

- Experiment: $n=5,10, \ldots, 100$;
- $T=3$: sample size $M=20000 ; T=9$: sample size $M=100000$;
- Repeated 100 times;
- Plot of the average estimated single-run relative errors $\widehat{\mathrm{RE}}\left[L_{n}\right]$;
- Left $T=3$; right $T=9$;

Conclusion and Outlook

- $M_{t} / M / 1$: simple queue with time-dependent arrival rate;
- Rare event analysis and large deviations rely on $M / M / 1$ results and heuristics;
- Challenge for rigid analysis;
- Importance sampling algorithms show empirically to be efficient;
- Large overflow horizons worse than small overflow times;
- Needs a rigid analysis of efficiency;
- Possible extensions
- More general models (varying service rates; more servers);
- Other rare events (maximum in busy cycle);

