Importance Sampling for Counting Sudoku's

Ad Ridder

Department EOR
Vrije Universiteit Amsterdam
Homepage: http://personal.vu.nl/a.a.n.ridder/

RMC, 6 April 2013

- Number of Hamilton cycles in a graph;
- Number of perfect matchings in balanced bipartite graph;
- Equivalently; the permanent of its associated biadjacency matrix;
- Number of binary contingency tables with given row and column totals;
- Number of feasible assignments to a 3-SAT formula;
- Number of random graphs with prescribed degrees;
- Etc.

A graph

With a Hamilton cycle.

A bipartite graph.

A (empty) table with required row and column totals

1	1			1		1	4
	1	1					4
1	1				1		3
	1	1		1	1	1	5
1			1			1	3
3	4	2	1	2	2	3	

A solution.

Sudoku puzzles are published in newspapers, internet, etc. For instance

6	2							1
	8			2				
4				3	1			8
2	7							
			9		7			
							9	3
5			7	8				6
				4			3	
3							5	7

Solving the puzzle you get the Sudoku.

6	2	3	8	7	9	5	4	1
7	8	1	4	2	5	3	6	9
4	9	5	6	3	1	2	7	8
2	7	9	3	1	4	6	8	5
8	3	6	9	5	7	1	2	4
1	5	4	2	6	8	7	9	3
5	4	2	7	8	3	9	1	6
9	5	7	5	4	6	8	3	2
3	6	8	1	9	2	4	5	7

Question

How large is the number of distinct Sudoku's?

- Basically, this will answer whether there are enough puzzles before repeating.
- You find Sudoku's on Internet, in newspapers, magazines, special puzzle books,etc.
- Daily.
- We like to know whether these are all different.
- Not taking into account reduction by symmetries such as rotations, swapping, etc.
- Given is a population Ω of elements.
- Interest is in some subset $A \subset \Omega$ of elements defined by some property:

$$
A=\{x \in \Omega: \operatorname{property}(x)\} .
$$

- The objective is: compute the size of A; i.e. $|A|$ or $\# A$.
- Consider the probability space (Ω, \mathbb{P});
- Where $\mathbb{P}=\mathbb{P}_{u}$ is the probability measure on Ω induced by the uniform probability density function (pdf) u :

$$
\mathbb{P}(B)=\mathbb{P}_{u}(B)=u(B)=\frac{|B|}{|\Omega|}, \quad \text { for all } B \subset \Omega ;
$$

- Specifically for the singleton subsets: $u(x)=1 /|\Omega|$;
- A random element of Ω is represented by the identity map $X: \Omega \rightarrow \Omega$;
- Thus, we get the natural interpretation of picking at random elements of Ω :

$$
\mathbb{P}(X \in B)=u(B)=\frac{|B|}{|\Omega|}, \quad \text { for all } B \subset \Omega ;
$$

- The counting problem is reformulated by the computation problem

$$
|A|=\mathbb{P}(X \in A)|\Omega|=u(A)|\Omega| .
$$

1. The size $|\Omega|$ is known, but too large to check each element for its property;
2. The size $|A|$ is unknown;
3. It is easy to generate samples $x \in \Omega$ from the uniform distribution;
4. It is easy to test whether a sample $x \in \Omega$ lies in the target set A or not.

Easy means that the associated algorithm runs in polynomial time.

- Generate iid copies X_{1}, \ldots, X_{n} of X using the uniform pdf;
- Implement an unbiased estimator of $\mathbb{P}(X \in A)$ by

$$
Y=\frac{1}{n} \sum_{k=1}^{n} \mathbb{1}\left\{X_{k} \in A\right\}
$$

- Return unbiased estimator of $|A|$ by

$$
\widehat{|A|}=Y|\Omega|
$$

- Also called the crude Monte Carlo (CMC) estimator.
- Apply to Sudoku counting problem;
- Analyse performance of the counting estimator.

Simulation for Sudoku Counting Problem

Definition

A 9-permutation lattice is a 9×9-lattice with each row a 9-permutation.

Example

3	1	2	8	6	5	4	9	7
6	3	7	5	9	2	4	1	8
1	8	3	4	6	5	9	2	7
4	9	5	3	7	6	2	8	1
2	3	9	7	4	8	6	1	5
2	9	7	3	5	1	6	4	8
1	4	2	8	7	6	9	3	5
3	6	9	8	4	2	1	5	7
5	6	4	3	7	9	1	2	8

- Population Ω is the set of all 9-permutation lattices;
- Clearly, its size is

$$
|\Omega|=(9 \times 8 \times 7 \times \cdots \times 1)^{9}=(9!)^{9}=1.091 \times 10^{50}
$$

- Generating a random 9-permutation lattice is trivial since it is just a matter of placing 9 random 9 -permutations under each other;
- The set A of all Sudoku's is a subset of Ω.
- The set A of Suduko's is a rare event in the probability space (Ω, \mathbb{P});
- Running the simulation algorithm for generating 100M 9-permutation lattices did not result in any Sudoku;
- This took about 5:45 minutes on my MacBook Pro 2.4 GHz;
- In fact, we will see later that on average only 1 in $1.6 \times 10^{28} 9$-permutation lattices is a Sudoku;
- It would take 1.8×10^{15} years on average to 'catch' a Sudoku.
- Idea: simulate elements $x \in \Omega$ using a pdf $q(x)$;
- Such that Sudoku's have a higher chance of being generated; i.e.

$$
\mathbb{P}_{q}(X \in A) \gg \mathbb{P}_{u}(x \in A)
$$

- Apply

$$
\mathbb{P}_{u}(X \in A)=\mathbb{E}_{u}[\mathbb{1}\{X \in A\}]=\mathbb{E}_{q}[\underbrace{\frac{d \mathbb{P}_{u}}{d \mathbb{P}_{q}}(X)}_{\substack{\text { likelihood } \\ \text { ratio } L(X)}} \mathbb{1}\{X \in A\}]
$$

- This is called a change of measure.
- From the change of measure we get importance sampling simulation;

Algorithm

Repeat n times (independently)

1. Simulate a 9-permutation lattice X using new pdf q;
2. Compute the associated likelihood ration $L(X)=u(X) / q(X)$;
3. Determine whether sample $X \in A$ (is a sudoku).

- Return IS estimator of the probability $Y_{\mathrm{IS}}=\frac{1}{n} \sum_{k=1}^{n} L\left(X_{k}\right) \mathbb{1}\left\{X_{k} \in A\right\}$;
- Return IS estimator of the number $\widehat{A A}_{\text {IS }}=Y_{\text {IS }}|\Omega|$.
- Importance sampling estimator is unbiased;
- Variance reduction (compared to CMC) can be huge;
- However, a careless change of measure could result in variance increase!
- The importance sampling issue is: find a good change of measure that is implementable;
- Actually, goal is to deliver an optimal importance sampling estimator, given an optimality criteria; or within a class of estimators.
- A random 9-permutation lattice under the \mathbb{P}_{q} probability:
(a). Simulate 9-permutations row by row starting at the top;
(b). Simulate a row from left to right;
(c). Suppose box (i, j) (row i, column j) has to get a digit:
- In CMC randomly one of the $9-j+1$ row-feasible digits would be drawn;
- In IS, determine the number $R_{i j}$ of row+column+block feasible digits, and choose one at random;
- If $R_{i j}=0$, apply the CMC rule.
- Note that after the first $R_{i j}=0$, generating the current lattice can be stopped with output zero.
- Suppose that we have reached $i=3, j=5$; and that we have so far

5	8	9	6	1	7	3	2	4
2	1	4	9	5	3	6	7	8
7	3	6	4					

- In CMC, choose one of the feasible 1,2,5,8,9 at random;
- In IS; just 2,8 are feasible.
- It takes just about 0.77 sec . to generate 1 M lattices in the IS simulations;
- There were more than 3000 Sudoku's among them;
- Repeating this 100 times gave an estimate of $6.6622 \mathrm{e}+21$ for the number of distinct Sudoku's;
- With 95\% confidence interval

$$
6.2633 \mathrm{e}+21<\widehat{|A|}<7.0611 \mathrm{e}+21
$$

- The number of Sudoku puzzles is of the same order;
- An enormous number; surely you will never encounter the same puzzle twice;
- NB: for the classic 9×9 Sudoku the exact number has been established to be $6.671 \mathrm{e}+21$ (6670903752021072936960); the estimate has a relative error of 2%.
- First some implementation issues:
- Because the original \mathbb{P} is the uniform: $u(X)=1 /|\Omega|:$

$$
\begin{aligned}
& \widehat{|A|}_{\text {IS }}=\frac{1}{n} \sum_{k=1}^{n} L\left(X_{k}\right) \mathbb{1}\left\{X_{k} \in A\right\}|\Omega|=\frac{1}{n} \sum_{k=1}^{n} \frac{u\left(X_{k}\right)}{q\left(X_{k}\right)} \mathbb{1}\left\{X_{k} \in A\right\}|\Omega| \\
& =\frac{1}{n} \sum_{k=1}^{n} \frac{1}{q\left(X_{k}\right)} \mathbb{1}\left\{X_{k} \in A\right\}
\end{aligned}
$$

- Where $q(X)=\prod_{i j} q_{i j}(X)=\prod_{i j} 1 / R_{i j}(X)$
- Consider the rare event probability $\mathbb{P}_{u}(X \in A)$;
- A probability estimator Y is efficient if

$$
\operatorname{RAT}(Y)=\frac{\left|\log \mathbb{E}\left[Y^{2}\right]\right|}{\left|\log (\mathbb{E}[Y])^{2}\right|} \approx 1
$$

- CMC is not efficient: $\operatorname{RAT}\left(Y_{\mathrm{CMC}}\right)=0.5$;
- The IS estimator has $\operatorname{RAT}\left(Y_{\mathrm{IS}}\right) \approx 0.95$ (empirically from the 100 experiments).
- This importance sampling algorithm is based on a one-step-look-ahead (OSLA) idea;
- OSLA has been applied also for counting
- Hamilton cycles;
- Perfect matchings;
- Self-avoiding walks;
- Etc.
- Still, it can be stucked quite often;
- See the Sudoku counting: 'only' 3000 out of one million trials turned out to be successful;
- A randomized algorithm for counting problems;
- Specifically, counting Sudoku's;
- Importance sampling based on one-step-look-ahead;
- Easy to use for other counting problems; other versions of the Sudoku; larger dimensional Sudoku's ($16 \times 16,25 \times 25, \ldots$);
- Ongoing research for more advanced importance sampling algorithms (stochastic enumeration); and other randomized counting algorithms (splitting; MCMC).

1. Blanchet, J., and Rudoy, D. 2009. Rare event simulation and counting problems. Chapter 8 in Rare event simulation using Monte Carlo methods, eds. Rubino G. and Tuffin, B., Wiley, pp. 171-192.
2. L'Ecuyer, P., Blanchet, J.H., Tuffin, B., and Glynn, P.W. 2010. Asymptotic robustness of estimators in rare-event simulation, ACM Transactions on Modeling and Computer Simulation, 20(1), article 6.
3. Felgenhauer, B., and Javis, F. 2005. Enumerating possible Sudoku grids. Available at http://www.afjarvis.staff.shef.ac.uk/sudoku/sudoku.pdf
4. Jerrum, M. 2001. Counting, sampling and integrating: algorithms and complexity. Birkhäuser.
5. Mitzenmacher, M., Upfal, E. 2005. Probability and computing: randomized algorithms and probabilistic analysis. Cambridge University Press.
6. Rubinstein, R., Ridder, A., and Vaisman, S. 2014. Fast sequential Monte Carlo methods for counting and optimization. Wiley (forthcoming).
