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What is a Vertex Cover in a Graph?

I A set of vertices such that each edge of the graph is incident to at least one vertex
of the set.

I Example

v1

v3

v2

v4

I Finding a minimum vertex cover is one of the classical NP-complete decision
problems.

I {v1, v3} and {v2, v3} are minimal vc’s. All supersets of these are vc.



Associated Counting Problem

I How many vertex covers are there for a given graph?

I #P-complete counting problem.

I Related to propositional model counting.

I Efficient model counting algorithms are of interest for Bayesian inference
problems or combinatorial design problems.



Randomized Approximation Algorithms

I We will consider simple undirected graphs G = G(V,E).

I Let cG(n) be the exact (but unknown) number of vertex covers in an instance
graph G with n = |V| vertices.

I A randomized algorithm produces a random output ĉG(n) as estimate.

I A randomized algorithm is a fully polynomial randomized approximation scheme
(FPRAS) if for every triple (n, ε, δ) the output satifies

P
(
(1− ε)cG(n) < ĉG(n, ε, δ) < (1 + ε)cG(n)

)
> 1− δ

in a running time that is polynomial in ε−1, log δ−1 and n.

I Note that ε and δ may be part of the input of the estimator.



FPRAS Successes

I Other combinatorial counting problems.

I Generally hard to construct FPRAS.

I Some (not exhausted!) are
Karp et al. (1989) for counting the number of satisfying assignments to a boolean
formula in disjunctive normal form.

Jerrum and Sinclair (1996) for counting the number of matchings (of all sizes) in a graph.

Cryan and Dyer (2003) for the number of contingency tables when the number of rows is
constant.

Dyer (2003) for counting the number of solutions to a 0-1 knapsack problem.

Jerrum et al. (2004) for counting the permanent of a matrix with nonnegative entries.



FPRAS for Counting Vertex Covers in a Graph

I Not (yet?) developed.

I But ...



FPRAS for Counting Vertex Covers in Random Graphs

We have constructed an algorithm that shows FPRAS for random graphs. This means
I Let S (n) be the set of all (simple undirected) graphs with n vertices.

I Then
PEG(algorithm is FPRAS for G ∈ S (n))→ 1,

as n→∞, when G is drawn randomly from S (n) according to the Edgar Gilbert
model.

I This means that each edge from the
(n

2

)
possible edges is present with probability

1/2.



The Algorithm

Importance sampling.
I Given an undirected simple graph G = G(V,E) with n = |V| vertices.

I Consider binary vectors x = (x1, . . . , xn) ∈ {0, 1}n.

I Any binary vector corresponds one-to-one with a vertex set V(x) ⊂ V by

vi ∈ V(x) ⇔ xi = 1.

I Let f be a proposal PMF on {0, 1}n such that

V(x) is vertex cover in G ⇒ f (x) > 0.

I Then

cG(n) = Ef

[
I{V(x) is vertex cover in G}

f (X)

]
.



Sequential Importance Sampling (SIS)

I Decomposition by conditional PMF’s:

f (x) =
n∏

i=1

fi(xi|x1, . . . , xi−1).

I Given a proposal f ,
easy to generate x1, x2, . . . iteratively from the conditional PMF’s;

hence, easy to get binary vector x D∼ f ;

finally, easy to check vertex cover property of associated vertex set V(x).

I Repeat N times to get unbiased estimator

ĉG(n) =
1
N

N∑
i=1

I{V(Xi) is vertex cover in G}
f (Xi)

,

I For what proposal f is SIS algorithm FPRAS for random graphs?



The Zero-variance Proposal PMF

I Define
f ∗(x) =

1
cG(n)

I{V(x) is vertex cover in G}.

I Then Varf∗ (̂cG(n)) = 0.

I This is optimal importance sampling (and certainly FPRAS).

I Unfortunately, not implementable.

I But ...



Decomposition of Zero-variance PMF

I We can show that

f ∗(x) =
n∏

i=1

f ∗i (xi|x1, . . . , xi−1).

I Where

f ∗i (1|x1, . . . , xi−1) =
cG[i]

cG[i] + cG[−i]

f ∗i (0|x1, . . . , xi−1) = 1− f ∗i (1|x1, . . . , xi−1)

I Where
G[i] and G[−i] are specific (known) subgraphs of G, given by the values of x1, . . . , xi−1;

c
G[i] is the associated number of vertex covers in subgraph G[i] (exact but unknown).



An Implementable Proposal PMF

I Approximate the conditional zero-variance PMF’s:

fi(1|x1, . . . , xi−1) =
A[i]

A[i] + A[−i]
.

I Where A[i] and A[−i] are computable approximations of cG[i] and cG[−i] ,
respectively.

I As follows (for cG[i] ):

Given x1, . . . , xi−1, determine subgraph G[i];

Say G[i] has k vertices;

Let G be a random graph of k vertices according to the Edgar Gilbert model;

Then set A[i] = EEG[cG (k)];

I Easy to compute

EEG[cG (k)] =
k∑

i=0

(k
i

)
2−
(

i
2

)



Main Result

Theorem

The SIS algorithm with the approximated conditional zero-variance PMF’s is FPRAS for
counting vertex covers in random graphs.

The proof is based on a similar result for counting cliques (Rasmussen 1997) and the
relation between vertex covers in a graph and cliques in the complement graph.



Improved Algorithm

I Again approximate the vertex cover numbers cG[i] and cG[−i] that pop up in the
expression of the conditional zero-variance PMF’s:

f̃i(1|x1, . . . , xi−1) =
B[i]

B[i] + B[−i]
.

I Approximation is based on a vertex cover relaxation.



Vertex Cover Relaxation

I Consider the subgraph G[i] = (V[i],E[i]).

I Suppose k vertices.

I Label the vertices in some order v1, . . . , vk.

I Define probabilities pi = di/(k − 1);

I where di = the number of downstream (i.e., j > i) neighbours of vi.

I Define a probability space ΩG of all graphs G′ = (V[i],E′) with the same vertex set
V[i];

I but where each possible edge (vi, vj), j > i is present in E′ with probability pi.

I Let G be a random graph in this probability space.

I Then set B[i] = EΩG [cG (k)].

I It can be shown that the computation of B[i] has polynomial complexity O(k2).

I Similarly for the subgraph G[−i].



Comparison

Conjecture

The SIS estimators of counting vertex covers satisfy

Var̃f (̂cG(n)) ≤ Varf (̂cG(n)).



Experiments

I Our SIS algorithms denoted Alg. A and Alg. B.

I Cachet is exact model counting software introduced by Sang et al. (2004); based
on a SAT solver.

I SampleSearch is a probabilistic model counting technique by Gogate and Dechter
(2006, 2007); based on sampling from the search space of a Boolean formula.

I No randomized algorithms have been developed dedicated to the vertex cover
counting problem.



Random Graphs

I 40 random graphs for each n = 5, 10, . . . , 100.

I Plot of the estimated coefficients of variation of the SIS estimators (ratio of
variance and square mean).
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A Small Model

I n = |V| = 100 vertices and |E| = 2432 edges.

I Exact (Cachet): cG(n) = 244941.

I Alg. B: estimate 2.444e+05 with (numerical) relative error 1.28e-02.

I SampleSearch: estimate 196277!



A Large Model

I n = |V| = 1000 vertices and |E| = 249870 edges.

I Alg. B estimate 2.773e+11 with (statistical) relative error 1.579e-02.

I Cachet and SampleSearch failed.
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