Counting Vertex Covers in General Graphs

Ad Ridder (VU Amsterdam)
Zdravko Botev (UNSW Sydney)
Radislav Vaisman (UQ Brisbane)

APS, 6 July, 2015

What is a Vertex Cover in a Graph?

- A set of vertices such that each edge of the graph is incident to at least one vertex of the set.
- Example

- Finding a minimum vertex cover is one of the classical NP-complete decision problems.
- $\left\{v_{1}, v_{3}\right\}$ and $\left\{v_{2}, v_{3}\right\}$ are minimal vc's. All supersets of these are vc.

Associated Counting Problem

- How many vertex covers are there for a given graph?
- \#P-complete counting problem.
- Related to propositional model counting.
- Efficient model counting algorithms are of interest for Bayesian inference problems or combinatorial design problems.

Randomized Approximation Algorithms

- We will consider simple undirected graphs $G=G(V, E)$.
- Let $c_{G}(n)$ be the exact (but unknown) number of vertex covers in an instance graph G with $n=|V|$ vertices.
- A randomized algorithm produces a random output $\widehat{c}_{G}(n)$ as estimate.
- A randomized algorithm is a fully polynomial randomized approximation scheme (FPRAS) if for every triple (n, ϵ, δ) the output satifies

$$
\mathbb{P}\left((1-\epsilon) c_{G}(n)<\widehat{c}_{G}(n, \epsilon, \delta)<(1+\epsilon) c_{G}(n)\right)>1-\delta
$$

in a running time that is polynomial in $\epsilon^{-1}, \log \delta^{-1}$ and n.

- Note that ϵ and δ may be part of the input of the estimator.

FPRAS Successes

- Other combinatorial counting problems.
- Generally hard to construct FPRAS.
- Some (not exhausted!) are
- Karp et al. (1989) for counting the number of satisfying assignments to a boolean formula in disjunctive normal form.
- Jerrum and Sinclair (1996) for counting the number of matchings (of all sizes) in a graph.
- Cryan and Dyer (2003) for the number of contingency tables when the number of rows is constant.
- Dyer (2003) for counting the number of solutions to a 0-1 knapsack problem.
- Jerrum et al. (2004) for counting the permanent of a matrix with nonnegative entries.

FPRAS for Counting Vertex Covers in a Graph

- Not (yet?) developed.
- But...

FPRAS for Counting Vertex Covers in Random Graphs

We have constructed an algorithm that shows FPRAS for random graphs. This means

- Let $\mathscr{S}(n)$ be the set of all (simple undirected) graphs with n vertices.
- Then

$$
\mathbb{P}_{\mathrm{EG}}(\text { algorithm is FPRAS for } G \in \mathscr{S}(n)) \rightarrow 1,
$$

as $n \rightarrow \infty$, when G is drawn randomly from $\mathscr{S}(n)$ according to the Edgar Gilbert model.

- This means that each edge from the $\binom{n}{2}$ possible edges is present with probability $1 / 2$.

The Algorithm

Importance sampling.

- Given an undirected simple graph $G=G(V, E)$ with $n=|V|$ vertices.
- Consider binary vectors $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}$.
- Any binary vector corresponds one-to-one with a vertex set $V(\mathbf{x}) \subset V$ by

$$
v_{i} \in V(\mathbf{x}) \quad \Leftrightarrow \quad x_{i}=1
$$

- Let f be a proposal PMF on $\{0,1\}^{n}$ such that

$$
V(\mathbf{x}) \text { is vertex cover in } G \Rightarrow f(\mathbf{x})>0 .
$$

- Then

$$
c_{G}(n)=\mathbb{E}_{f}\left[\frac{\mathbb{I}\{V(\mathbf{x}) \text { is vertex cover in } G\}}{f(\mathbf{X})}\right] .
$$

Sequential Importance Sampling (SIS)

- Decomposition by conditional PMF's:

$$
f(\mathbf{x})=\prod_{i=1}^{n} f_{i}\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)
$$

- Given a proposal f,
- easy to generate x_{1}, x_{2}, \ldots iteratively from the conditional PMF's;
- hence, easy to get binary vector $\mathbf{x} \xrightarrow{\mathcal{D}} f$;
- finally, easy to check vertex cover property of associated vertex set $V(\mathbf{x})$.
- Repeat N times to get unbiased estimator

$$
\widehat{c}_{G}(n)=\frac{1}{N} \sum_{i=1}^{N} \frac{\mathbb{I}\left\{V\left(\mathbf{X}_{i}\right) \text { is vertex cover in } G\right\}}{f\left(\mathbf{X}_{i}\right)}
$$

- For what proposal f is SIS algorithm FPRAS for random graphs?

The Zero-variance Proposal PMF

- Define

$$
f^{*}(\mathbf{x})=\frac{1}{c_{G}(n)} \mathbb{I}\{V(\mathbf{x}) \text { is vertex cover in } G\}
$$

- Then $\mathbb{V} a r_{f^{*}}\left(\widehat{c}_{G}(n)\right)=0$.
- This is optimal importance sampling (and certainly FPRAS).
- Unfortunately, not implementable.
- But ...

Decomposition of Zero-variance PMF

- We can show that

$$
f^{*}(\mathbf{x})=\prod_{i=1}^{n} f_{i}^{*}\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)
$$

- Where

$$
\begin{aligned}
f_{i}^{*}\left(1 \mid x_{1}, \ldots, x_{i-1}\right) & =\frac{c_{G^{[i]}}}{c_{G^{[i]}}+c_{G^{[-i]}}} \\
f_{i}^{*}\left(0 \mid x_{1}, \ldots, x_{i-1}\right) & =1-f_{i}^{*}\left(1 \mid x_{1}, \ldots, x_{i-1}\right)
\end{aligned}
$$

- Where
- $G^{[i]}$ and $G^{[-i]}$ are specific (known) subgraphs of G, given by the values of x_{1}, \ldots, x_{i-1};
- $c_{G^{[i]}}$ is the associated number of vertex covers in subgraph $G^{[i]}$ (exact but unknown).

An Implementable Proposal PMF

- Approximate the conditional zero-variance PMF's:

$$
f_{i}\left(1 \mid x_{1}, \ldots, x_{i-1}\right)=\frac{A^{[i]}}{A^{[i]}+A^{[-i]}} .
$$

- Where $A^{[i]}$ and $A^{[-i]}$ are computable approximations of $c_{G^{[i]}}$ and $c_{G^{[-i]}}$, respectively.
- As follows (for $c_{G^{[i]}}$):
- Given x_{1}, \ldots, x_{i-1}, determine subgraph $G^{[i]}$;
- Say $G^{[i]}$ has k vertices;
- Let \mathscr{G} be a random graph of k vertices according to the Edgar Gilbert model;
- Then set $A^{[i]}=\mathbb{E}_{\mathrm{EG}}\left[c_{g}(k)\right]$;
- Easy to compute

$$
\mathbb{E}_{\mathrm{EG}}\left[c_{\mathscr{G}}(k)\right]=\sum_{i=0}^{k}\binom{k}{i} 2^{-\binom{i}{2}}
$$

Main Result

Theorem

The SIS algorithm with the approximated conditional zero-variance PMF's is FPRAS for counting vertex covers in random graphs.

The proof is based on a similar result for counting cliques (Rasmussen 1997) and the relation between vertex covers in a graph and cliques in the complement graph.

- Again approximate the vertex cover numbers $c_{G^{[i]}}$ and $c_{G^{[-i]}}$ that pop up in the expression of the conditional zero-variance PMF's:

$$
\tilde{f}_{i}\left(1 \mid x_{1}, \ldots, x_{i-1}\right)=\frac{B^{[i]}}{B^{[i]}+B^{[-i]}} .
$$

- Approximation is based on a vertex cover relaxation.

Vertex Cover Relaxation

- Consider the subgraph $G^{[i]}=\left(V^{[i]}, E^{[i]}\right)$.
- Suppose k vertices.
- Label the vertices in some order v_{1}, \ldots, v_{k}.
- Define probabilities $p_{i}=d_{i} /(k-1)$;
- where $d_{i}=$ the number of downstream (i.e., $j>i$) neighbours of v_{i}.
- Define a probability space Ω_{G} of all graphs $G^{\prime}=\left(V^{[i]}, E^{\prime}\right)$ with the same vertex set $V^{[i]}$;
- but where each possible edge $\left(v_{i}, v_{j}\right), j>i$ is present in E^{\prime} with probability p_{i}.
- Let \mathscr{G} be a random graph in this probability space.
- Then set $B^{[i]}=\mathbb{E}_{\Omega_{G}}\left[c_{G}(k)\right]$.
- It can be shown that the computation of $B^{[i]}$ has polynomial complexity $\mathcal{O}\left(k^{2}\right)$.
- Similarly for the subgraph $G^{[-i]}$.

Comparison

Conjecture

The SIS estimators of counting vertex covers satisfy

$$
\mathbb{V a r} \tilde{f}_{f}\left(\widehat{c}_{G}(n)\right) \leq \mathbb{V a r} r_{f}\left(\widehat{c}_{G}(n)\right)
$$

Experiments

- Our SIS algorithms denoted Alg. A and Alg. B.
- Cachet is exact model counting software introduced by Sang et al. (2004); based on a SAT solver.
- SampleSearch is a probabilistic model counting technique by Gogate and Dechter (2006, 2007); based on sampling from the search space of a Boolean formula.
- No randomized algorithms have been developed dedicated to the vertex cover counting problem.

Random Graphs

- 40 random graphs for each $n=5,10, \ldots, 100$.
- Plot of the estimated coefficients of variation of the SIS estimators (ratio of variance and square mean).

A Small Model

- $n=|V|=100$ vertices and $|E|=2432$ edges.
- Exact (Cachet): $c_{G}(n)=244941$.
- Alg. B: estimate $2.444 \mathrm{e}+05$ with (numerical) relative error $1.28 \mathrm{e}-02$.
- SampleSearch: estimate 196277!

A Large Model

- $n=|V|=1000$ vertices and $|E|=249870$ edges.
- Alg. B estimate $2.773 \mathrm{e}+11$ with (statistical) relative error $1.579 \mathrm{e}-02$.
- Cachet and SampleSearch failed.

References

Vaisman, Botev \& Ridder, Statistics and Computing, 2015.Rasmussen, Random Structures \& Algorithms, 1997.Cryan \& Dyer, J. of Computer and System Sciences, 2003.

Dyer, In Proceedingsof 35th ACM symposium on theory of computing, 2003.Jerrum \& Sinclair, In Approximation algorithms for NP-hard problems, 1996.Jerrum, Sinclair \& Vigoda, J. of the ACM, 2004.
\square Karp, Luby \& Madras, J. of Algorithms, 1989.Dechter \& Gogate, In Principles and practice of constraint programming, 2006.

- Gogate \& Dechter, In Proceedings of 22nd national conference on artificial intelligence, 2007.

Rang, Bacchus, Beaume, Kautz \& Pitassi, In Proceedings 7th international conference on theory and applications of satisfiability testing, 2004.

