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Abstract: In this note we shall deal with a continuous review (r,Q) inven-

tory control system. Demands for a single product item occur at epochs gen-

erated by a Poisson process, and the replenishment lead time has a truncated

normal distribution. We shall derive expressions for the demand probabili-

ties during lead times based on exact expressions for ’tail moments’ of the

standard normal distribution. The program for finding an optimal reorder

point r and an optimal order quantity Q under service level constraints is

solved numerically.

1 Introduction

Consider a continuous review (r,Q) inventory control system with stochastic

lead times and demands. More precisely, we assume that demands occur at

epochs generated by a Poisson process with rate λ and that each demand

size equals one unit. The lead time L is stochastic with density

fL(t) =


1

Φ(µ/σ)
1

σ
√
2π

e−
1

2σ2 (t− µ)2 t > 0

0 t ≤ 0
(1)

(with µ > 0 and σ ̸= 0) where Φ(·) stands for the standard normal cumula-

tive distribution function. It says that L is truncated normally distributed.

Mean µL and variance σ2
L of L are expressed using tail moments of the
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standard normal density function ϕ,

Mi(x) =

∫ ∞

x
uiϕ(u)du (2)

for x ∈ R and i = 0, 1, . . .. In section 2 we shall derive expressions for these

moments, here we use the result for i ≤ 2:

M0(x) = Φ(−x), M1(x) = ϕ(x), M2(x) = xϕ(x) +M0(x)

Then

µL = µ+ σ
M1(−µ/σ)

Φ(µ/σ)
, σ2

L = σ2

(
M2(−µ/σ)

Φ(µ/σ)
− M2

1 (−µ/σ)

Φ2(µ/σ)

)
Let the stochastic variable W denote the total demand during lead time.

Its distribution is a main issue in modelling inventory systems since it has

impact on safety stocks, decision variables and performance. Commonly

one approximates it by a normal distribution for getting ’easy’ expressions

[3]. Also weibull distributions have been used as approximations that are

numerical tractable [4]. In some cases it is possible to derive the exact

distributions, see [2] for an overview. The particular model of this paper

yields exact expressions by using (1) and (2) and executing some algebra:

pW (i) = P (W = i) =

∫ ∞

0
e−λt (λt)

i

i!
fL(t)dt = G

(λσ)i

i!

i∑
j=0

(
0

i

)
j

(
µ̂

σ

)j

Mj(−
µ̂

σ
)

(3)

where

G =
e−λµ+ 1

2
λ2σ2

Φ(µσ )
and µ̂ = µ− λσ2

Note that the mean and variance of W are

µW =
∞∑
i=0

ipW (i) = λµL and σ2
W = λ2σ2

L + µW
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The probabilities (3) are numerically tractable only for ’slow moving’ items,

i.e. λ ≤ µ/σ2. In [1] these probabilities are approximated by relaxing the

truncation of the lead time distribution:

p̃W (i) =

∫ ∞

−∞
e−λt (λt)

i

i!

1

σ
√
2π

e−
1

2σ2 (t− µ)2dt (4)

For slow moving items (4) is the density of a Hermite distribution [1]. Nu-

merical experiments show that for (absolute) small σ and for relative large λ

(compared to µ) the exact and approximate values agree with 4 decimales.

As for ’fast moving’ items where we cannot calculate the exact probabilities

or use the hermite approximation, we either use an approximation of the

lead time demand (e.g. normal distribution), or we approximate the de-

mand and/or lead time distribution in a way that a well known model arises

[2].

2 Expressions for Mi(x)

Theorem 1 of this section expresses the tail moments Mi(x) in terms of

values of the standard normal distribution and density. First we introduce

two collections of integers.

Definition 1 We introduce for n = 0, 1, . . . and k = 0, 1, . . . , n the integers

a
(n)
k by

a
(0)
0 = 1

a
(n)
k = 2na

(n−1)
k , n = 1, 2, . . . , k = 0, 1, . . . n− 1

a(n)n = 1, n = 1, 2, . . .
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and the integers b
(n)
k by

b
(0)
0 = 1

b
(n)
k = (2n+ 1)b

(n−1)
k , n = 1, 2, . . . , k = 0, 1, . . . n− 1

b(n)n = 1, n = 1, 2, . . .

Then it is easy to show by induction on n the following relations of these

integers.

Lemma 1

a
(n)
k = (2k + 2)a

(n)
k+1, n ≥ 1, k ≤ n− 1

b
(n)
k = (2k + 3)b

(n)
k+1, n ≥ 1, k ≤ n− 1

b
(n)
k = a

(n)
k +

n∑
ℓ=k+1

a
(n)
ℓ b

(ℓ−1)
k , n ≥ 1, k ≤ n

The main result of this section is the following statement.

Theorem 1

Mi(x) = αiΦ(−x) + βi(x)ϕ(x)

with

(i) for i = 0

α0 = 1, β0(x) = 0

(ii) for i = 2n+ 1 odd (n ≥ 0)

αi = 0, βi(x) =
n∑

k=0

a
(n)
k x2k

(iii) for i = 2n even (n ≥ 1)

αi = b
(n−1)
0 , βi(x) =

n−1∑
k=0

b
(n−1)
k x2k+1
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Proof: (i) is clear.

(ii) For n = 0 the statement says M1(x) = ϕ(x) which is an easy exercise. Suppose

that (ii) holds for n ≤ m and set n = m+ 1 (i = 2m+ 3). Then by using a change

of variable, integration by parts, the induction hypothesis and Lemma 1,

M2m+3(x) =

∫ ∞

x

u2m+3 1√
2π

e−
1
2u

2

du =

∫ ∞

x2

vm+1 1

2

1√
2π

e−
1
2vdv

= x2m+2 1√
2π

e−
1
2x

2

+ (m+ 1)

∫ ∞

x2

vm
1√
2π

e−
1
2 vdv

= x2m+2 1√
2π

e−
1
2x

2

+ 2(m+ 1)

∫ ∞

x

u2m+1 1√
2π

e−
1
2u

2

du

= x2m+2ϕ(x) + 2(m+ 1)M2m+1(x) = x2(m+1)ϕ(x) + 2(m+ 1)

m∑
k=0

a
(m)
k x2kϕ(x)

=

m+1∑
k=0

a
(m+1)
k x2kϕ(x)

(iii) First show by induction on n (and using part (ii)) that

Mi(x) =

n−1∑
k=0

a
(n−1)
k

{
x2k+1ϕ(x) +M2k(x)

}
, i = 2n, n ≥ 1 (5)

Then when n = 1 (i = 2) (5) says

M2(x) = xϕ(x) +M0(x) = xϕ(x) + Φ(−x)

This gives (iii) because α2 = b
(0)
0 = 1 and β2(x) = b

(0)
0 x = x. Suppose the statement

holds for n ≤ m and set n = m+ 1 (i = 2m+ 2), then by using (5), the induction
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hypothesis and Lemma 1,

M2m+2(x) =

m∑
k=0

a
(m)
k

{
x2k+1ϕ(x) +M2k(x)

}
=

m∑
k=0

a
(m)
k x2k+1ϕ(x) + a

(m)
0 Φ(−x) +

m∑
k=1

a
(m)
k

{
b
(k−1)
0 Φ(−x) +

k−1∑
ℓ=0

b
(k−1)
ℓ x2ℓ+1ϕ(x)

}

=

{
a
(m)
0 +

m∑
k=1

a
(m)
k b

(k−1)
0

}
Φ(−x) +

m∑
k=0

a
(m)
k x2k+1ϕ(x) +

m∑
k=1

k−1∑
ℓ=0

a
(m)
k b

(k−1)
ℓ x2ℓ+1ϕ(x)

= b
(m)
0 Φ(−x) +

m∑
k=0

a
(m)
k x2k+1ϕ(x) +

m−1∑
ℓ=0

m∑
k=ℓ+1

a
(m)
k b

(k−1)
ℓ x2ℓ+1ϕ(x)

= b
(m)
0 Φ(−x) +

m−1∑
k=0

{
a
(m)
k +

m∑
ℓ=k+1

a
(m)
ℓ b

(ℓ−1)
k

}
x2k+1ϕ(x) + x2m+1ϕ(x)

= b
(m)
0 Φ(−x) +

m∑
k=0

b
(m)
k x2k+1ϕ(x)

3 Optimization programs

In this section we use the lead time demand probabilities (3) in the average

cost function per unit time of the (r,Q) inventory system with backordering.

Particularly we are interested in the effect of the lead time variability on the

decision variables r and Q. Also we compare the results with those obtained

applying the approximation (4).

Assuming no backordering costs we consider minimizing the average costs

per unit time under service level constraint. The cost function becomes

under the usual assumptions [3].

K(r,Q) = A
λ

Q
+ IC

(
Q+ 1

2
+ r − µW

)
where A is the cost of placing an order, I the inventory carrying charge, C

unit cost of the item
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We shall consider two optimization programs.

(I) minimize the cost function under service level constraint on the proba-

bility of no stockout during a replenishment cycle,

B1(r) = P (W ≤ r) =

r∑
i=0

pW (i) ≥ 1− ϵ1

(II) minimize the cost function under service level constraint on the fraction

of demand satisfied directly from on-hand inventory,

B2(r,Q) = 1− 1

Q

∞∑
i=r

(i− r)pW (i) ≥ 1− ϵ2

The ϵ’s are typically of the order of 5%. The programs are solved by calcu-

lating the differentials

∆rK(r,Q) = K(r+1, Q)−K(r,Q) and ∆QK(r,Q) = K(r,Q+1)−K(r,Q)

Then we use structural properties of these differentials and apply standard

numerical procedures to find the optimal reorder point r∗ and optimal order

size Q∗. The following tables summarize some numerical experiments for

slow moving items, keeping λ and µ fixed and varying the lead time variance

via σ. The cost factors are A = 500, IC = 25, the ϵ’s are 5%.

Program I Program II

σ r∗ Q∗ r∗ Q∗

0.05 8 6 5 9

0.5 8 6 5 9

0.75 8 6 6 9

1.25 8 6 6 9

1.5 9 6 6 9

1.75 9 6 6 9

1.95 9 6 7 9

Program I Program II

σ r∗ Q∗ r∗ Q∗

0.05 5 6 3 8

0.25 5 6 3 8

0.5 5 6 3 8

1.0 5 6 3 8

1.25 6 6 3 9

1.4 6 6 4 9

λ = 1, µ = 4, 0 < σ < 2 λ = 1, µ = 2, 0 < σ < 1.414
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Program I Program II

σ r∗ Q∗ r∗ Q∗

0.05 6 8 4 10

0.5 6 8 4 10

0.75 7 8 4 10

1.0 7 8 4 11

1.15 8 8 5 10

Program I Program II

σ r∗ Q∗ r∗ Q∗

0.05 8 9 5 11

0.6 8 9 5 11

0.7 8 9 5 12

0.95 9 9 6 12

λ = 1.5, µ = 2, 0 < σ < 1.155 λ = 2, µ = 2, 0 < σ < 1.0

From these results we conclude that the optimal reorder point and optimal

order size are (almost) insensitive for σ (and hence for variability in lead

time). We performed the same experiments for the hermites approximation

of the lead time demand. It turns out that we find (in most cases) the same

numbers. The approximation works so well because we need rounding to

integers.
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