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Abstract

Intuition may lead to the hypothesis that in stochastic inventory systems a higher de-
mand variability results in larger variances and in an increase of total expected system
costs. In a recent paper, Song [5] formally proved this assertion to hold for a certain
class of inventory models (including the Newsboy Problem), given a particular definiti-
on of variability. Here we use stochastic dominance relations in the Newsboy Problem
to characterize demand distributions for which the opposite effect may occur, i.e., hig-
her demand variability may result in larger variances and lower costs. In addition, we
provide necessary and sufficient conditions under which larger demand variances and
lower costs occur simultaneously.

Keywords: Newsboy Problem, Demand Variability, Stochastic Dominance.

1 Introduction

In the Newsboy Problem a newsboy vendor decides at the beginning of the day on how many
newspapers to take out to the vendor point such as to minimize total expected costs. Let
Q be the number of newspapers to take out to the vendor point, D the random demand
during a day, h > 0 the costs per newspaper in surplus at the end of the day, and p > 0 the
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penalty cost per newspaper in short at the end of the day. The cost function in the Newsboy
Problem is defined as the total expected costs at the end of the day, that is

C(Q) = IE
(

h(Q − D)+ + p(D − Q)+

)

, (1)

which is minimized for

Q∗ = min

{

Q = 0, 1, . . . : IP(D ≤ Q) ≥ p

p + h

}

.

We consider two vendor points which differ only with respect to their demand processes. The
demands D1 and D2 have equal means IED1 = IED2 but different variances, say Var(D1) ≤
Var(D2). The associated optimal decisions are Q∗

1 and Q∗

2. What can be said about the
relation between the costs C1(Q

∗

1) and C2(Q
∗

2)? In two recent papers [5, 6] Song has studied
this question. For a specific class of demand distributions he showed that the demand with a
larger variance admits higher costs. This class is identified by stochastic dominance relations,
notably of low degrees. The purpose of our paper is to show that, by considering higher
degrees of stochastic dominance relations, distributions may be characterized for which the
opposite effect may occur.

2 Preliminaries

First, we consider the Newsboy Problem with continuous demands. In Section 5 we return
to the discrete demand case. For demand D with cdf (cumulative distribution function) F
we use the relations

IE(D − Q)+ = IED − Q + IE(Q − D)+,

and

IE(Q − D)+ =

∫ Q

0

F (x) dx (2)

to rewrite the expected costs (1) as

C(Q) = p(IED − Q) + (h + p)

∫ Q

0

F (x) dx. (3)

Let us consider two systems i = 1, 2, where demand Di in system i has cdf Fi and density
function fi. The cost function Ci in system i is minimized for Q∗

i . A comparison of the
variability of the demands in the two systems may be carried out in many different ways,
depending on the definition of variability. In [5] the following definition has been used.

Definition 1 D2 is more variable than D1, denoted by D2 ≥var D1, if f2 − f1 changes sign
exactly twice with sign sequence +,–,+.
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When D2 is more variable than D1 according to this definition, the mass of the distribution
of D2 is spread out more to the tails than the distribution of D1. Hence, the variance of D2

is larger than the variance of D1 (we always assume equal means). Moreover, [5] proves that
the expected costs (1) associated with D2 are at least as large as those with D1. Formally,

Lemma 1 (Song [5])
D2 ≥var D1 ⇒ C2(Q

∗

2) ≥ C1(Q
∗

1).

In the sequel we consider alternative definitions to measure demand variability. These defini-
tions are well accepted in the context of Utility Theory (see e.g. Fishburn and Vickson [1]).
In the next section we indicate how these definitions may help us to characterize demand
distributions for which the opposite effect may occur, i.e., a larger variance and lower costs.

Definition 2 The stochastic dominance relation ≥n is defined for n = 1, 2, . . . as,

D1 ≥n D2 if and only if for all x ≥ 0 Hn(x) ≥ 0,

where

H0(x) = f2(x) − f1(x) (x ≥ 0),

Hn(x) =

∫ x

0

Hn−1(t) dt (n = 1, 2, . . . ; x ≥ 0).

The lower degrees of these dominance relations are equivalent to the stochastic orderings
which are familiar in the Operations Research literature (see Chapter 1 in Stoyan [7]): D1 ≥1

D2 is equivalent to D1 ≥stochastic D2, D1 ≥2 D2 is equivalent to D1 ≥concave D2. Also, because
IED1 = IED2, D1 ≥2 D2 is equivalent to D2 ≥convex D1. Theorem 1 in Fishburn [2] says that
(D1 ≥n D2, IED1 = IED2, IED2

1 6= IED2
2) implies IED2

1 < IED2
2. So for ease of exposition,

we say that the demand D2 is more n-variable than demand D1, whenever D1 stochastically
dominates D2 in degree n (n ≥ 2).

Carrying out the proof of Lemma 1, we notice that it suffices to assume that D1 ≥2 D2

instead of D2 ≥var D1. The latter is much stronger, as has been pointed out on p. 13 in [7]:
≥var ordering implies the convex ordering ≥convex (and hence the ≥2). To summarize,

D2 ≥var D1 ⇒ D2 ≥convex D1 ⇒ D1 ≥2 D2 ⇒
{

Var(D1) ≤ Var(D2),
C1(Q1) ≤ C2(Q2).

3 The opposite effect

Now, let us investigate the stochastic dominance ≥n for higher degrees n > 2. The following
theorem states a sufficient condition under which the opposite effect occurs, i.e., higher
demand variance in combination with lower total expected costs occurs.
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Theorem 1 (Sufficiency)
(i) If D1 ≥n D2 for some n > 2, then Var(D1) ≤ Var(D2).
(ii) If the cost factors h and p are such that H2(Q

∗

1) < 0 then C1(Q
∗

1) > C2(Q
∗

2).

Proof. Part (i) is a direct consequence of Theorem 1 in [2]. For part (ii) we use the
definition of Q∗

2 and relation (3).

C2(Q
∗

2) − C1(Q
∗

1) ≤ C2(Q
∗

1) − C1(Q
∗

1)

= (h + p)

(
∫ Q∗

1

0

F2(x) dx −
∫ Q∗

1

0

F1(x) dx

)

= (h + p)H2(Q
∗

1). �

Notice that the occurrence of the opposite effect depends on whether H2(Q
∗

1) < 0. If H2(x) <
0 for some x > 0, then we can always construct a situation in which H2(Q

∗

1) < 0 by selecting
a suitable set of cost parameters. Therefore, it suffices to assume that demand D2 is more
n-variable than D1 for some n > 2 (but not for n = 2). The pairs (D1, D2) of demands
satisfying the conditions of Theorem 1 constitute a nontrivial class, of which we provide
examples in the following section.

It is also possible to give a graphical interpretation of this class. If D2 is more n-variable than
D1 for some n > 2, then certainly H2(x) ≥ 0 on [0, ǫ) for some positive ǫ, and H2(ǫ) > 0.
Requiring H2(·) to become negative somewhere beyond ǫ implies at least one sign change.
The same line of reasoning yields that H1 has at least two sign changes, and, finally, that
H0 has at least three sign changes starting with the sign sequence +,–,+,–. In this way we
have generalized Definition 1 where exactly two sign changes are required.

In Lemma 2 below we generalize the conditions of Theorem 1 to obtain necessary and
sufficient conditions for the opposite effect to occur. For this purpose we use,

H2(∞) :=

∫

∞

0

H1(x) dx = IED1 − IED2 = 0,

and consequently

H3(∞) =
1

2

(

IED2
2 − IED2

1

)

. (4)

The latter relation is proved in the Appendix.

Lemma 2 (Necessity and sufficiency)

Var(D1) ≤ Var(D2) and C1(Q
∗

1) ≥ C2(Q
∗

2)

⇔

H3(∞) ≥ 0 and H2(Q
∗

1) ≤
p

h + p
(Q∗

2 − Q∗

1) −
∫ Q∗

2

Q∗

1

F2(x) dx.
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Proof.

C2(Q
∗

2) − C1(Q
∗

1) = p(Q∗

1 − Q∗

2) + (h + p)

(
∫ Q∗

2

0

F2(x) dx −
∫ Q∗

1

0

F1(x) dx

)

= p(Q∗

1 − Q∗

2) + (h + p)

(

H2(Q
∗

1) +

∫ Q∗

2

Q∗

1

F2(x) dx

)

.

The lemma follows directly from this equality and relation (4). �

4 Examples

Traditional families of demand densities are (truncated) Normal, Lognormal, Beta, Gamma,
Weibull and Uniform (Silver & Peterson [4] and Appendix B in Tijms [8]). When both
densities of D1 and D2 are taken from one of these families, the requirements regarding
the first two moments, i.e., IED1 = IED2 and Var(D1) ≤ Var(D2), imply that D2 is more
2-variable than D1 (see the tables in Appendix 1 of [7]). For instance, suppose that Di ∼
Gamma(λi, αi). Then

IED1 = α1

λ1
= α2

λ2
= IED2

Var(D1) = α1

λ2
1

< α2

λ2
2

= Var(D2)















⇒
α1

λ1
= α2

λ2

α1 > α2















⇒ D2 ≥convex D1 ⇒ D1 ≥2 D2.

To show that the opposite effect may occur even when the demand densities belong to the
same family, we consider in Example 1 the family of nonsymmetric triangular densities.

Example 1

A nonsymmetric triangular density f is characterized by three parameters a < b < c,

f(x) =































2(x − a)
(b − a)(c − a)

on [a, b],

2(c − x)
(c − a)(c − b)

on [b, c],

0 else.

To fulfill the conditions of Theorem 1 and/or Lemma 2, the parameters ai, bi, ci of demand
density fi satisfy a set of (in)equalities which follow from the expressions of the mean, the
variance, and the Hn functions for n = 0, 1, 2, 3. From the feasible solutions of this set we
present below two examples. The first one relates to Theorem 1: demand D2 is more 3-
variable than D1 (and not more 2-variable). The second example relates to Lemma 2 where
the opposite effect occurs when the conditions of Theorem 1 do not apply.

(a) Let the triangular densities be characterized by
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a1 = 1, b1 = 2, c1 =
11

2
; a2 = 0, b2 = 4, c2 =

9

2
,

and let the cost factors be h = 1 and p = 6. The numerical results are presented in Table 1.

i Q∗

i H2(Q
∗

i ) IEDi Var(Di) Ci(Q
∗

i ) H3(∞)

1 4 −0.0529 17/6 0.9306 1.6667

2 3.9279 −0.0546 17/6 1.0139 1.2883
1/24

Table 1. Results for Example 1(a)

The graphs of H0, . . . , H3 are easily obtained. They show three sign changes of H0, and
H3 ≥ 0, implying D1 ≥3 D2. Clearly, also the conditions of Lemma 2 must be satisfied.
Indeed, calculus yields

H2(Q
∗

1) = −0.0529 < 0.0011 =
p

h + p
(Q∗

2 − Q∗

1) −
∫ Q∗

2

Q∗

1

F2(x) dx.

(b) Let

a1 = 0, b1 = 4, c1 = 6; a2 = 1, b2 = 2, c2 = 7,

and the cost factors h = 5 and p = 1.

i Q∗

i H2(Q
∗

i ) IEDi Var(Di) Ci(Q
∗

i ) H3(∞)

1 2 −1/18 10/3 28/18 2

2 2 −1/18 10/3 31/18 5/3
1/12

Table 2. Results for Example 1(b)

In this example H0 < 0 on (0, 1), hence all Hn < 0 on (0, 1). We cannot expect the
existence of an n such that Hn ≤ 0 everywhere, since that would imply D2 ≥n D1 and
Var(D2) ≤ Var(D1), which is not so. Therefore, it is never true that D1 is more n-variable
than D2, or that D2 is more n-variable than D1. On the other hand, straightforward calculus
shows that the conditions of Lemma 2 are fulfilled:

H3(∞) =
1

12
> 0, H2(Q

∗

1) = − 1

18
< 0 =

p

h + p
(Q∗

2 − Q∗

1) −
∫ Q∗

2

Q∗

1

F2(x) dx.

Next we consider an example in which the demand density functions belong to different
families.
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Example 2

Let D1 have a Lognormal (µ = −0.1, σ2 = 0.2) density and D2 a Gamma (λ = 4, α = 4)
density, i.e.,

f1(x) =
1

x
√

0.4π
e−(log x + 0.1)2/0.4, f2(x) =

4

6
(4x)3e−4x (x > 0).

Furthermore, let h = 1, and p = 24. Table 3 summarizes the numerical results.

i Q∗

i H2(Q
∗

i ) IEDi Var(Di) Ci(Q
∗

i ) H3(∞)

1 1.9797 −0.0013 1 0.2214 1.4052

2 2.0214 −0.0014 1 0.25 1.3712
0.0143

Table 3. Results for Example 2

The graph of H0 shows three sign changes in sequence +,–,+,–. The integrals H1, H2, H3 are
determined numerically and show that H3 ≥ 0, implying that D2 is more 3-variable than
D1. Furthermore, calculus yields

H2(Q
∗

1) = −0.001442 < 0.000097 =
p

h + p
(Q∗

2 − Q∗

1) −
∫ Q∗

2

Q∗

1

F2(x) dx,

in accordance with Lemma 2.

5 The finite discrete model

In the discrete version of the Newsboy Problem we assume finite discrete demands, say

Di ∈ I = {0, 1, . . . ,M},
with densities fi, i.e., fi(k) = IP(Di = k). The optimal decisions Q∗

1 and Q∗

2 are integer
valued. The integral in the right hand side of (3) is replaced by

IE(Q − D)+ =

Q−1
∑

k=0

IP(D ≤ k).

The stochastic dominance version of Definition 2 has been identified in Fishburn and Lavalle
[3].

Definition 3 The stochastic dominance relation ≥I
n is defined for n = 1, 2, . . . ,M as,

D1 ≥I
n D2 if and only if

{

hn ≥ 0, n = 1, 2

hn ≥ 0 and hk(M − k + 1) ≥ 0, k = 2, . . . , n − 1, n = 3, . . . ,M,
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where

h0(k) = f2(k) − f1(k),

hn(k) =
k
∑

ℓ=0

hn−1(ℓ) (n = 1, 2, . . . ,M).

Applying Corollary 2 of [3] we adapt Theorem 1 as follows.

Theorem 2

(i) If D1 ≥I
n D2 for some n = 3, 4, . . . ,M , then Var(D1) ≤ Var(D2).

(ii) If the costs factors h and p are such that h2(Q
∗

1 − 1) < 0 then C1(Q
∗

1) > C2(Q
∗

2).

Example 3

Let I = {1, 2, 3, 4} and let the demand densities be

1 2 3 4

f1 1/15 6/15 1/15 7/15

f2 3/15 1/15 5/15 6/15

The demands satisfy h3(1) = 2/15, h3(2) = 1/15, h2(3) = 0, which implies that D1 ≥I
3 D2.

For cost factors h = 1 and p = 1 the numerical results are listed in Table 4.

i Q∗

i h2(Q
∗

i − 1) IEDi Var(Di) Ci(Q
∗

i )

1 3 −1/15 44/15 254/225 1

2 3 −1/15 44/15 284/225 13/15

Table 4. Results for Example 3

6 Conclusion

The conclusion of this paper is that a reduction of the demand uncertainty in stochastic pro-
duction and inventory models is not always economically favourable. Whether uncertainty
reduction indeed results in cost reductions depends on many factors such as the definition
of uncertainty, the structure of the demand distributions, and the ratio between the short-
ness and surplus costs. We have formally proved this for the classical Newsboy Problem.
However, the same conclusion holds for dynamic inventory models controlled by a base stock
policy, where D in the cost function (1) stands for the lead time demand and Q for the base
stock level.
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Appendix

The calculation of H2(∞) is easy. Let F i be the tail distribution function of demand Di,
F i(x) = 1 − Fi(x). Then

H2(∞) =

∫

∞

0

(F2(x) − F1(x)) dx =

∫

∞

0

(

F 1(x) − F 2(x)
)

dx = IED1 − IED2.

For the calculation of H3(∞) we make use of the so-called excess equilibrium distribution
functions in Renewal Theory,

Gi(x) :=
1

IEDi

∫ x

0

F i(y) dy (x ≥ 0).

Let Xi be a nonnegative random variable with distribution function Gi. The expectation of
Xi is well known to be

IEXi =

∫

∞

0

Gi(x) dx =
IED2

i

2IEDi

.

Hence, since IED1 = IED2,
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H3(∞) =

∫

∞

0

H2(x) dx

=

∫

∞

0

∫ x

0

(F2(y) − F1(y)) dy dx

=

∫

∞

0

∫ x

0

(

F 1(y) − F 2(y)
)

dy dx

=

∫

∞

0

(

(IED1)G1(x) − (IED2)G2(x)
)

dx

=

∫

∞

0

(

(IED1)(1 − G1(x)) − (IED2)(1 − G2(x))
)

dx

=

∫

∞

0

(IED2)G2(x) dx −
∫

∞

0

(IED1)G1(x) dx

=
1

2

(

IED2
2 − IED2

1

)

.
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