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Abstract

We present exchange formulas that allow to express the stationary distribution of a con-
tinuous Markov chain with denumerable state-space having generator matrix Q∗ through a
continuous time Markov chain with generator matrix Q. Under suitable stability conditions,
numerical approximations can be derived from the exchange formulas, and we show that the
algorithms converge at a geometric rate. Applications to sensitivity analysis and bounds
on perturbations are discussed as well. Numerical examples are presented to illustrate the
numerical efficiency of the proposed algorithm.

1 Introduction

Let X = {Xt, t ≥ 0} be a continuous-time ergodic Markov process on a denumerable state space
S. Throughout this paper we will denote its transition matrix by P (t), and its infinitesimal
generator by Q. The infinitesimal generator is assumed to be conservative, where a matrix is
called conservative if its row-sums are equal to zero. Furthermore, we assume that X has a unique
stationary distribution, denoted by π, and we denote the associated ergodic matrix by Π, i.e., Π
is a matrix with rows equal to π. Suppose that Q∗ is the conservative generator matrix of another
continuous time Markov chain X ∗ = {X∗

t , t ≥ 0} defined on the same state space as X and denote
its stationary distribution by π∗ (existence assumed) and the ergodic matrix by Π∗. This paper
addresses the following problem: can the difference between Π and Π∗ be estimated from Q∗, Q
and Π? In other words, what is the effect of changing Q to Q∗ on the stationary distribution of
the Markov process? For example, consider an open queueing network with arrival rate λ. What
is the effect on the stationary distribution if λ is changed to λ∗?

In this paper we will present a general exchange formula that allows to express Π∗ as a mapping
of Q∗, Q and Π only. More precisely, we will show that

Π∗ = Π
∑

n≥0

((Q∗ −Q)D)n,
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where D = (dij)i,j∈S is the deviation matrix associated with Q, which has elements

dij
def=

∫ ∞

0

(pij(t)− πj)dt, i, j ∈ S. (1)

The deviation exists whenever all integrals in (1) are finite. Hence, provided the deviation matrix
exists and the exchange formula converges, Π∗ can be presented as a power series in Q∗, for given
given Q, D and Π. As a first application of the exchange formula, we will derive an expression
for derivatives of Π with respect to parameters of Q. Also, bounds on perturbations will be
established. Moreover, we will establish sufficient conditions such that D can be obtained in
closed form.

Based on this, we we derive a numerical algorithm for finite state-space Markov chains that
allows to compute Π∗ out of Q∗. In applications this has the nice feature that once D and Π
are evaluated (either by explicit formula or numerically), our algorithm offers the opportunity of
computing Π∗ in a fast way. In particular, we will show that the algorithm converges exponentially
fast and we will provide an efficient bound on the error made by evaluating the exchange formula
only for a finite number of elements. This provides a tool for discrete optimization as once Π and
D are computed, Π∗ can be computed for various choices of Q∗ by simple matrix multiplication,
and we consider the exchange formula as a fast and efficient way of analyzing the effect of changing
Q to Q∗ on the stationary distribution for various possible alternatives simultaneously in a fast
way.

In addition, a functional version of the algorithm exists that allows to present Π as function
of θ where θ is a parameter of Q. More precisely, let Q depend on some parameter θ in a linear
way. For example if Q is the generator matrix of an open Jackson network, then θ may be the
arrival rate and the entries of Qθ are linear mappings in θ. Writing Qθ for Q at θ and denoting
the ergodic matrix of Qθ by Πθ and the deviation matrix by Dθ, we show that

Πθ+∆ = Πθ

∑

n≥0

∆n((Qθ′ −Qθ)Dθ)n,

for any θ′ 6= θ. The above series expansion is called a functional series expansion as it allows
to obtain Πθ+∆ as a polynomial in ∆. This provides a tool for continuous optimization in the
following way. Suppose that one is interested in the maximal value of θ such that πθg ≤ c for
some cost function g and given constant c. Then, the functional series expansion can be used
for obtaining πθ+∆g as a polynomial in ∆. Hence, πθ+∆g = c can be solved for, say ∆∗, and
θ∗ = θ + ∆∗ yields an (approximate) solution to the problem πθg ≤ c.

The paper is organized as follows. In Section 2 basic properties of continuous-time Markov
chains are presented. The exchange formula and its application to sensitivity analysis and bound-
ing of perturbations is investigated in Section 3. Numerical algorithms are discussed in Section 4.
Functional series expansions are presented in Section 5.

2 Preliminaries on Denumerable Markov Chains

2.1 Basic Properties of the Generator Matrix

We first establish basic properties of the infinitesimal generator Q and the ergodic matrix Π.

Lemma 2.1 If it exists the ergodic matrix of a continuous-time Markov process X with infinites-
imal generator Q satisfies

(i) ΠQ = QΠ = 0, and even AΠ = 0 for all conservative matrices A ∈ RS×S,

(ii) BΠ = Π for all stochastic matrices B ∈ RS×S.
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Proof: Due to the equal rows of Π the proof of (ii) and the second equation of (i) can be
executed straightforward by extracting πj , j ∈ S outside the sum. Then πj

∑
j∈S ai,j = 0 and

πj

∑
i∈S bi,j = πj follow from the conservativeness of A and the properties of the stochastic matrix

B, respectively. For the proof of ΠQ = 0 it is advisable to apply the transition rates of the related
time reversed process X rev. The existence of such a process is assured by Theorem 1.3 in [16]
which provides the necessary and sufficient condition that for X it exists at least one λi > 0, i ∈ S,
satisfying the local balance equation

λiqi,j = λjqj,i, i, j ∈ S.

Obviously, this condition holds for the ergodic distribution π so that all processes investigated in
this paper are assured to be reversible. The transition rates of the reversed process are

qrev
i,j =

πjqi,j

πi
, i, j ∈ S, (2)

and it holds for the ergodic distributions

πrev = π

(for a more detailed presentation, we refer to [16]). By applying (2) and replacing qi,j by the
reversed rates we obtain the desired result

∑

i∈S

πi

πjq
rev
j,i

πi
= πj

∑

i∈S

qrev
j,i = 0, i, j ∈ S.

¥

The following lemma establishes key properties of the deviation matrix for time-continuous
Markov chains.

Lemma 2.2 If it exists the deviation matrix of a continuous-time Markov process with infinites-
imal generator Q and ergodic matrix Π satisfies

(i) ΠD = 0,

(ii) −QD = I −Π.

Proof: Since the proof requires a splitting of the integrals in (1) with the separate integrals
infinite, we replace the entries of the deviation matrix by the associated Laplace transforms. For
appropriate α > 0 and i, j ∈ S it holds

∑

k∈S

πkd̂kj(α) =
∑

k∈S

πk

∫ ∞

0

e−αt(pkj(t)− πj)dt =
∑

k∈S

πk

∫ ∞

0

e−αtpkj(t)dt−
∑

k∈S

πk

∫ ∞

0

e−αtπjdt.

Justified by Fubini’s theorem, we can interchange summation and integration so that we obtain
from Lemma 2.1 (ii)

∑

k∈S

πkd̂kj(α) =
∫ ∞

0

e−αtπjdt−
∫ ∞

0

e−αtπjdt = 0.

By applying the same Laplace transform to (ii), we get

∑

k∈S

qikd̂kj(α) =
∑

k∈S

qik

∫ ∞

0

e−αt(pkj(t)− πj)dt =
∫ ∞

0

e−αt

(∑

k∈S

qikpkj(t)− πj

∑

k∈S

qik

)
dt.
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Justified by the conservativeness of Q we have
∑

k∈S qik = 0 and from Kolmogorov’s backward
equation which is valid for all kinds of continuous-time Markov processes even with unbounded
transition rates we get

∑
k∈S qikpkj(t) = p′ij(t). Hence it holds

∑

k∈S

qikd̂kj(α) =
∫ ∞

0

e−αtp′ij(t)dt.

Now we let α converge to 0 and obtain for the right-hand side of the equation with the interchange
of limit and integration justified by the monotone convergence theorem

∫ ∞

0

p′ij(t)dt = lim
t→∞

pij(t)− lim
t→0

pij(t) = πj − δij

where δij denotes Kronecker’s delta, i.e., δij = 1 for i = j and zero otherwise. Now it remains to
show that the limits for α → 0 of

∑
k∈S πkd̂kj(α) and

∑
k∈S qikd̂kj(α) equal their values at α = 0.

Therefore, we refer to the proof’s of Syski’s Proposition 3.6 and Corollary 3.7 in [25] which are
based upon the dominated convergence theorem.

¥

Definition 2.3 A generator matrix Q is called uniformizable with rate µ if µ = supj |qjj | < ∞.

Any finite dimensional generator matrix is uniformizable. A classical example of a Markov
chain on denumerable state-space that fails to be uniformizable is the M/M/∞ queue. Note that
if Q is uniformizable with rate µ, then Q is uniformizable with rate η for any η > µ.

Let Q be uniformizable with rate µ and introduce the Markov chain Pµ as follows

[Pµ]ij =

{
qij/µ i 6= j

1 + qii/µ i = j,
(3)

for i, j ∈ S, then it holds that

P (t) = e−µt
∞∑

n=0

(µt)n

n!
(Pµ)n, t ≥ 0. (4)

Moreover, the stationary distribution of Pµ and P (t) coincide, in formula: Πµ = Π. The Markov
chains Xµ = {Xµ

n : n ≥ 0} with transition probability Pµ is called the subordinate chain. The
relationship between X and Xµ can be expressed as follows. Let Nµ(t) denote a Poisson process
with rate µ, then Xµ

Nµ(t) and Xt are equal in distribution for all t ≥ 0. The deviation matrix
associated with Pµ is defined by

Dµ =
∑

n≥0

((Pµ)n −Πµ) =
∑

n≥0

(Pµ −Πµ)n + Πµ,

provided the sum exists. If Q is uniformizable with rate µ and the deviation matrices associated
with Pµ and P (t) exist, then

1
µ

Dµ = D, (5)

for a proof see [7]. Let Q∗ be uniformizable with rate µ∗ and let Q be uniformizable with rate µ.
Let η = max(µ, µ∗), then (3) implies that

P ∗η − Pη =
1
η
(Q∗ −Q)

and by (5) (with µ = η) it follows that

(P ∗η − Pη)Dη = (Q∗ −Q)D. (6)
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2.2 Geometric Ergodicity

The main tool for our analysis is the weighted supremum norm, also called v-norm, denoted by
‖ · ‖v, where v is some vector, with elements vi ≥ 1 for all i ∈ S, and for any w ∈ RS

||w||v def= sup
i∈S

|w(i)|
v(i)

. (7)

For a matrix A ∈ RS×S the v-norm is given by

‖A‖v
def= sup

i,||w||v≤1

∑S
j=1 |A(i, j)w(j)|

v(i)
,

which implies
max
j∈S

|A|(i, j) ≤ ||A||v v(i) , i ∈ S. (8)

Note that v-norm convergence to 0 implies elementwise convergence to 0. With the help of the
above concepts, v-geometric ergodicity (also called v-normed ergodicity) of P (t) can be introduced
as follows.

Definition 2.4 The Markov chain X is v-geometric ergodic if c < ∞ and β < 1 exist such that

‖P (t)−Π‖v ≤ cβt,

for all t ≥ 0.

Note that
||D||v ≤

∫ ∞

0

||P (t)−Π||vdt

and it is straightforward to check that geometric v-norm ergodicity implies existence of ||D||v.
Unfortunately, geometric v-norm ergodicity is almost impossible to check in a direct way. One of
the reasons is that P (t) is in general not known in explicit form. If Q is uniformizable, v-norm
ergodicity of P (t) can be deduced from v-norm ergodicity of Pµ in discrete time. The precise
statement is in the following lemma.

Lemma 2.5 Let Q be uniformizable with rate µ. If finite constants N , c and β, with 0 ≤ β < 1
exist such that ||(Pµ)n −Π||v ≤ cβn for all n, then P (t) is v-norm ergodic.

Proof: If X is uniformizable with rate µ, then by (4)

||P (t)−Π||v ≤ e−µt
∞∑

n=0

(µt)n

n!
||(Pµ)n −Π||v

≤ ce−µt
∞∑

n=0

(µt)n

n!
βn

= ce−µ(1−β)t

≤ c
(
e−µ(1−β)

)t

.

Noting that e−µ(1−β) < 1 proves the claim.
¥

Like in discrete time case, geometric v-norm ergodicity is sufficient for the deviation matrix to
exist.
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Lemma 2.6 Let Q be uniformizable with rate µ. If Pµ is v-norm ergodic, then ||D||v is finite.

Proof: If Q is uniformizable with rate µ, then (4) yields for the deviation matrix

D =
∫ ∞

0

(P (t)−Π)dt =
∫ ∞

0

e−µt
∞∑

n=0

(µt)n

n!
((Pµ)n −Π).

Suppose that ||(Pµ)n −Π||v ≤ cβn, for 0 ≤ β < 1 and all n. This implies

||D||v ≤
∫ ∞

0

e−µt
∞∑

n=0

(µt)n

n!
||(Pµ)n −Π||dt

≤
∫ ∞

0

e−µt
∞∑

n=0

(µt)n

n!
cβndt

= c

∫ ∞

0

e−µt(1−β)dt

=
c

µ(1− β)
.

¥

In the following lemma we derive an explicit representation of the deviation matrix.

Lemma 2.7 Let Q be uniformizable with rate µ. If Pµ is geometrically v-norm ergodic, then Dµ

and D exist and it holds that
Dµ =

∑

n≥0

((Pµ)n −Πµ)

and
D =

1
µ

∑

n≥0

((Pµ)n −Π).

Proof: Let Pµ is geometrically v-norm ergodic such that ||Pn
µ −Πµ||v ≤ cβn for some β < 1 and

all n. Since ∥∥∥∥∥∥
∑

n≥0

((Pµ)n −Πµ)

∥∥∥∥∥∥
v

≤
∑

n≥0

||((Pµ)n −Πµ)||v ≤ c

1− β

it follows that the sum on the above left hand side converges, which proves the first part of the
lemma.

The second part of the lemma follows from the fact that Πµ = Π and Dµ = µD.
¥

Let
me,j =

∑

i∈S

πimi,j ,

where mi,j is the mean first entrance time for state i to state j. Kemeny and Snell showed in
[18] that D =

∑
n≥0(I + Q − Π)n − Π provided that me,j < ∞ for all j ∈ S. According to

Coolen-Schrijner and van Doorn [7], the aforementioned condition on me,j can be relaxed to the
following: there is one j ∈ S such that me,j < ∞. The precise statement is given in the lemma
below.
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Lemma 2.8 If me,j < ∞ for at least one j ∈ S, then

D =
∑

n≥0

(I + Q−Π)n −Π.

Note that me,j is finite for finite state space S. Hence, the above lemma provides a proof for the
fact that for any finite Markov chain the deviation matrix can be obtained through the inverse of
Π−Q.

Example 2.9 Consider a stable M/M/∞. Then, me,0 < ∞ and the deviation matrix exists and
can be computed as described in Lemma 2.8.

Remark 2.10 The weighted supremum norm goes back to [20]. Normed ergodicity dates back to
the early eighties, see [12] and the revised version which was published as [8]. It was originally
used in analysis of Blackwell optimality; see [8], and [14] for a recent publication on this topic.
Since then, it has been used in various forms under different names in many subsequent papers. In
[13] it was shown for a countable Markov chain which may have one or several classes of essential
states (a so-called multichained Markov chain) that normed ergodicity is equivalent to geometrical
recurrence (for a similar result in Markov decision chains see [9]). Inspired by this result for a
countable Markov chain a similar result was proved for a Harris chain in [22]. In this paper we
use the recent results of [2], the first part of this technical report has appeared as [3].

We will frequently use results from [11] on v-norms. While the analysis in [11] has been carried
out for finite Markov chains, part of the results in [11] are obtained by purely norm-theoretic
arguments applied to products of matrices and can be carried over to the denumerable state-space
case without any harm. In the following we give for easy reference a summary of the results from
[11] that we will use.

Let A,B, C, F be square matrices (possibly infinite dimensional), and set

H(n) = F

n∑

k=0

((A−B)C)k,

R(n) = F

∞∑

k=n+1

((A−B)C)k,

and

G = F

∞∑

k=0

((A−B)C)k,

provided that the sum converges. The following type of condition will be frequently used:

[A,B,C] There exists a finite number N such that we can find δN ∈ (0, 1) which satisfies:

‖((A−B)C)N‖v < δN ,

and we set

cv
A,B,C

def=
1

1− δN

∥∥∥∥∥
N−1∑

k=0

((A−B)C)k

∥∥∥∥∥
v

.

The following result has been established in [11].

Lemma 2.11 Suppose that ‖F‖v is finite. Let

(i) Condition [A,B,C] holds.

(ii) There exists ρ ∈ (0,∞) and δ ∈ (0, 1) such that for all k

||((A−B)C)k||v ≤ ρδk.
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(iii) For all k it holds that
||R(k − 1)||v ≤ cv

A,B,C ||F ||vρδk,

with δ and ρ as in (ii) and cv
A,B,C as in (i).

(iv) ||H(n)||v converges ||G|| as n tends to infinity, in particular, and ||R(n)||v converges to zero
as n tends to infinity at a geometric rate.

(v) H(n) converges G as n tends to infinity.

Then,
(i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (v).

For finite matrices such that F has identical rows, it holds for all k that

||R(k − 1)||v ≤ c1A,B,C ||F ((A−B)C)k||1,

where 1 denotes the unit vector.

Note that ||F ||v < ∞ in the finite dimensional case. In [11] it has been shown that for finite
matrices it holds that (i) to (v) are equivalent in Lemma 2.11.

3 Series Representation for Denumerable Markov Chains

This section presents series expansions for continuous-time Markov chains with denumerable state-
space. The overall formula is derived in Section 3.1. In Section 3.2, sufficient conditions for the
convergence of the series are presented. An application to sensitivity analysis is provided in
Section 3.3. Eventually, we will present some new results on bounds on perturbations of Markov
chains in Section 3.4.

3.1 The Exchange Formula

Let us consider now a Markov process X ∗ uniquely determined by its infinitesimal generator Q∗.
To compute the corresponding ergodic matrix Π∗, we derive its series expansion based on the
generator Q, the ergodic matrix Π and the deviation matrix D of a process for which these are
well-known or easily calculated. By adding Q∗D to the equation put forward in Lemma 2.2 (ii),
we get

(Q∗ −Q)D = Q∗D + I −Π.

Multiplying this equation with Π∗ yields

Π∗(Q∗ −Q)D = Π∗Q∗D + Π∗ −Π∗Π.

Which can be simplified by applying Lemma 2.1 (i) and (ii) so that we obtain

Π∗(Q∗ −Q)D = Π∗ −Π.

This can be written as
Π∗ = Π + Π∗(Q∗ −Q)D. (9)

Inserting (9) into its right side yields

Π∗ = Π + Π(Q∗ −Q) + Π∗
(
(Q∗ −Q)D

)2
. (10)

From inserting now (9) into the right side of (10) we get

Π∗ = Π + Π(Q∗ −Q)D + Π
(
(Q∗ −Q)D

)2 + Π∗
(
(Q∗ −Q)D

)3
.
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By repeating this step n times we obtain

Π∗ = Π
n∑

k=0

(
(Q∗ −Q)D

)k + Π∗
(
(Q∗ −Q)D

)n+1
. (11)

We call the presentation in (11) the continuous time exchange formula. We separate (11) into the
series approximation of degree n

H(n) def= Π
n∑

k=0

(
(Q∗ −Q)D

)k

and remainder term
R(n) def= Π∗

(
(Q∗ −Q)D

)n+1
.

The representation in (11) provides a scheme for approximately computing Π∗, provided that R(n)
tends to 0 as n tends to infinity. A sufficient condition for this is that ||((Q∗ − Q)D)n||v tends
to zero as n tends to infinity. Moreover, provided this condition holds, then for any f , such that
f(x) ≤ cv(x) for all x ∈ S and some c (in formula: ||f ||v < ∞), it holds that |π∗f − H(n)f |
converges to zero as n tends to infinity.

A general sufficient condition for ||R(n)||v to converge to zero is that D exists and that Q∗

and Q are so close in v-norm sense that ||(Q∗ − Q)D||v = ρ < 1. For example, according to
Example 2.9, the deviation matrix for the M/M/∞ system exists and choosing Q∗ close to Q
will guarantee convergence of ||R(n)||v to zero. Unfortunately, in applications the Q∗ of interest
typically fails to be close to Q in the above sense.

When we use the exchange formula for numerical purposes in Section 4, we will assume that a
finite number N and constant δN < 1 exist such that

‖((Q∗ −Q)D)N‖v < δN . (12)

As we will show, condition (12) implies that |π∗f −H(n)f | tends to zero as n tends to infinity at
an exponential rate for any f with ||f ||v < ∞.

Remark 3.1 Provided that Q and Q∗ are uniformizable with rate µ and µ∗, respectively, the
effect of switching from Q to Q∗ on the stationary distribution can alternatively be expressed via
the corresponding subordinate chains. Let η ≥ max(µ, µ∗). Recall that the stationary distributions
of the subordinate chain and the continuous time chain coincide: Πη = Π and Π∗η = Π∗. Inserting
this together with (6) into (11) yields the following alternative expansion

Π∗ = Π
n∑

k=0

(
(P ∗η − Pη)Dη

)k + Π∗
(
(P ∗η − Pη)Dη

)n+1
. (13)

We call the presentation in (13) the suboridnate exchange formula, and we denote by

Hη(n) def= Π
n∑

k=0

(
(P ∗η − Pη)Dη

)k

for the subordinate series approximation of degree n and by

Rη(n) def= Π∗
(
(P ∗η∗ − Pη)Dη

)n+1

the remainder term. While the continuous-time exchange formula holds for continuous-time
Markov chains with conservative generator matrix, the subordinate exchange formula only applies
to uniformizable chains, which excludes, for example, the M/M/∞ system.

In order to be able to apply the exchange formula in (11), one requires sufficient conditions
such that R(n) tends to zero as n tends to infinity. Such conditions are hard to get in the general
case (i.e., for R(n) without uniformization). A detailed discussion of sufficient conditions for
convergence of H(n) towards Π∗ will be presented in Section 3.2.
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3.2 Convergence of H(n)

For practical purposes it is important that convergence of H(n) towards Π occurs at geometric
rate. Since the geometric rate with which the series converges is only in special cases computable,
we propose to find the convergence rate in an iterative way. The key observation is that if there
exists N such that ‖((Q∗ −Q)D)N‖v < δN for δN < 1, then H(k) converges at exponential rate
of at least δN . We introduce the following condition.

(C) There exists a finite number N such that we can find δN ∈ (0, 1) which satisfies:

‖((Q∗ −Q)D)N‖v < δN ,

and we set

cv
δN

def=
1

1− δN

∥∥∥∥∥
N−1∑

k=0

((Q∗ −Q)D)k

∥∥∥∥∥
v

.

Note that (C) is in fact condition [A,B,C] for A = Q∗, B = Q and C = D. The factor cv
δN

in
condition (C) allows to establish an upper bound for the remainder term that is independent of
Π∗.

Denote by T (k) = Π((Q∗ −Q)D)k the kth element of the series in (11). The following results
have been established in [11] and apply to denumerable chains as well. Applying Lemma 2.11 for
A = Q∗, B = Q, C = D, F = Π and G = Π∗ yields the following result for the continuous time
exchange formula.

Lemma 3.2 Under (C) it holds that for any v ≥ 1 that

(i) ‖R(k − 1)‖v ≤ cv
δN
‖T (k)‖v for any k.

(ii) limk→∞H(k) = Π
∑∞

n=0((Q
∗ −Q)D)n = Π∗.

(iii) There exist δ ∈ (0, 1) and ρ ∈ (0,∞) exist such that for any k

||T (k)||v ≤ ρ||Π||vδk

and the upper bound for R(k) in (i) converges geometrically fast towards zero.

Condition (C) is of key importance and this gives rise to the question for which class of
systems (C) holds. It has been been shown in [11] for finite discrete-time Markov chains that (the
discrete-time counterpart of condition) (C) is equivalent to the convergence of H(n) as n tends
to infinity. Unfortunately, (C) is a stronger condition than v-norm ergodicity; see the example
of a finite discrete-time Markov chain that is v-norm ergodic but fails to satisfy (C) in [11]. The
counterexample in [11] is, however, a rather esoteric Markov chain and in applications we have so
far encountered no system that violates (C). In the following we will show that v-norm ergodicity
of the subordinate chain is sufficient for convergence of Hη(n) as n tends to infinity applied to
appropriate powers of the subordinate chain. This result will hold without any condition of the
type of (C).

Let Q∗ and Q be uniformizable with rate µ∗ and µ, respectively, and let η = max(µ∗, µ). In
the following we will establish for uniformizable chains sufficient conditions for the convergence of
the sum on the righthand side in (13) for appropriate powers of P ∗η and Pη. The key condition is
the following:

(C’) There exist finite numbers k and N such that we can find δN ∈ (0, 1) which satisfies:
∥∥∥
(
((P ∗η )k − (Pη)k)Dη,k

)N
∥∥∥

v
< δN ,

where Dη,k is the deviation matrix associated with (Pη)k an set

cv
δN,η

def=
1

1− δN

∥∥∥∥∥
N−1∑

k=0

(((P ∗η )k − P k
η )Dη)k

∥∥∥∥∥
v

.

10



Note that (C’) is in fact condition [A,B,C] for A = (P ∗η )k, B = (Pη)k and C = Dη,k.
As we will show in the next theorem, v-norm ergodicity of P ∗η and Pη implies that condition

(C’) is satisfied for k ≥ 2, and thereby yields convergence of Hη(n) as n tends to infinity.

Theorem 3.3 Let Q and Q∗ be uniformizable, such that P ∗µ∗ and Pµ are v-norm ergodic. Then,
condition (C’) is satisfied for k ≥ 2 and it holds that

Π∗ = Π
∑

n≥0

(
((P ∗η )k − P k)Dη,k

)n
,

for any k ≥ 2.

Proof: By v-norm ergodicity, we have

||(Pη)n −Πη||v ≤ cβn , (14)

for n ≥ 1, with β ∈ (0, 1) and c ∈ (0,∞). Note that Pη and (Pη)n have the same ergodic projector
Πη. Indeed, if ΠηPη = Πη, then Πη(Pη)n = Πη for any n. By computation,

lim
n→∞

Dη,n = lim
n→∞

∑

k≥0

((Pη)nk −Πη)

= (I −Π) + lim
n→∞

∞∑

k≥1

((Pη)nk −Πη),

which implies that

lim
n→∞

||Dη,n − (I −Πη)||v = lim
n→∞

∥∥∥∥∥∥

∞∑

k≥1

((Pη)nk −Πη)

∥∥∥∥∥∥
v

. (15)

Since (Pη)n tends to Πη as n tends to infinity it holds it holds that

∀k : lim
n→∞

||(Pη)nk −Πη||v = 0.

This together with (14) allows for applying Dominated Convergence to show that

lim
n→∞

∥∥∥∥∥∥

∞∑

k≥1

((Pη)nk −Πη)

∥∥∥∥∥∥
v

= 0,

and we arrive at

lim
n→∞

||Dη,n||v = ||I −Πη||v. (16)

As n goes to infinity (P ∗η )n tends to Π∗η in v-norm, which implies

lim
n→∞

||((P ∗η )n − (Pη)n)Dn,η||v = ||(Π∗η −Πη)(I −Πη)||v = ||Π∗η −Πη||v.

Since (Π∗η −Πη)2 = 0, the above equation implies

lim
n→∞

||(((P ∗η )n − (Pη)n)Dη,n)k||v = 0, (17)

for all k ≥ 2. Hence, applying (6) it follows that (C’) holds for k = 2, which proves the first part
of the theorem.

For the proof of the second part of the theorem, follows from Lemma 2.11 for A = (P ∗η )k,
B = (Pη)k, C = Dη,k, F = Π and G = Π∗. Hence, the fact that condition (C’) holds for any
k ≥ 2 implies the desired convergence.

11
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To summarize, (C) is a sufficient condition for H(n) to converge as n tends to infinity and
to guarantee that the v-norm of the remainder decreases at an geometrically rate. The following
general result holds without any type (C) condition. Uniformizability together with v-norm
ergodicity of the subordinate chains is sufficient for the subordinate series Hη(n) to converge as n
tends to infinity and for the remainder term to decrease at geometric rate, provided the series is
developed for powers of the subordinate chains.

3.3 Sensitivity Analysis

Suppose that Q depends on some parameter θ ∈ (a, b) ⊂ R. For example, let Q be the infinitesimal
generator of the continuous-time queue length process of the M/M/1 queue with arrival rate λ and
service rate µ; then, Q may be interpreted as a mapping of θ = µ with θ ∈ (λ,∞), in writing Qθ.
In perturbation analysis of Markov chains one is typically interested in the effect of a change in θ
on the stationary distribution. More formally, let πθ denote the stationary distribution associated
with Qθ, then perturbation analysis seeks to compute dπθ/dθ. The often simple structure of Qθ

motivates the following condition

(K) ∀i, j ∈ S :
1
∆
|Qθ+∆(i, j)−Qθ(i, j)| ≤ K.

Indeed, in the M/M/1 example the entries of Qθ are linear mappings of θ. Given Dθ let dθ denote
the vector of absolute column sums for Dθ, i.e.,

dθ(j) =
∑

i

|Dθ(i, j)|, j ∈ S. (18)

Theorem 3.4 Let condition (K) be satisfied. If the vector dθ defined in (18) is finite, then πθ is
continuous at θ.

If, in addition, Qθ is elementwise differentiable, then

π′θ = πθQ
′
θDθ.

Proof: We apply (11) for n = 1 to Q∗ = Qθ+∆ and Q = Qθ, then

πθ+∆ − πθ = πθ+∆(Qθ+∆ −Qθ)Dθ

= πθ(Qθ+∆ −Qθ)Dθ + (πθ+∆ − πθ)(Qθ+∆ −Qθ)Dθ. (19)

Note that

|((Qθ+∆ −Qθ)Dθ)(i, j)| ≤
∑

k

|(Qθ+∆)(i, k)− (Qθ)(i, k)| |Dθ(k, j)|, i, j ∈ S.

Applying condition (K) yields

|((Qθ+∆ −Qθ)Dθ)(i, j)| ≤ |∆|K
∑

k

|Dθ(k, j)| ≤ |∆|Kdθ(j), i ∈ S.

Let D̂θ denote the matrix with rows identical to dθ, then

|(Qθ+∆ −Qθ)Dθ| ≤ |∆|KD̂θ.

Since D̂θ has identical rows, it holds that πθD̂θ = dθ, which is finite by assumption. Applying
Dominated Convergence then yields

lim
∆→0

πθ(Qθ+∆ −Qθ)Dθ = 0.

12



Following the same line of argument it follows that

|(πθ+∆ − πθ)(Qθ+∆ −Qθ)Dθ| ≤ |∆|K|(πθ+∆D̂θ + πθD̂θ),

where the fact that D̂θ has identical rows implies that πθ+∆D̂θ and πθD̂θ are finite. As for the
limit, we obtain

lim
∆→0

(πθ+∆ − πθ)(Qθ+∆ −Qθ)Dθ = 0.

Hence, πθ is continuous at θ, which proves the first part of the theorem.
We turn to the proof of the second part of the theorem. Elaborating on (19), we first show

that
lim
∆→0

1
∆

πθ(Qθ+∆ −Qθ)Dθ = πθQ
′
θDθ.

This is a direct consequence of condition (K), which allows to apply Dominated Convergence and
the existence of Q′θ. As for the second term, continuity of πθ and differentiability of Qθ implies
that

lim
∆→0

1
∆

(πθ+∆ − πθ)(Qθ+∆ −Qθ)Dθ = lim
∆→0

(πθ+∆ − πθ) lim
∆→0

1
∆

(Qθ+∆ −Qθ)Dθ

= 0,

which proves the second claim.
¥

Finiteness of dθ is guaranteed for finite Markov chains. In the denumerable case, a sufficient
condition for dθ to be finite is ||DT

θ ||v < ∞. It is worth noting that Theorem 3.4 applies without
uniformization. To see this, note that the deviation matrix of M/M/∞ satisfies the condition put
forward in Theorem 3.4 although the system fails to be uniformizable. The above perturbation
formula extends the result in [4] to non uniformizable chains.

3.4 Perturbation Bounds

The study of perturbation bounds for Markov chains is known as perturbation analysis of Markov
chains (PAMC) in the literature. PAMC is a classical topic in Markov chain literature and dates
back to [23]. The key task in PAMC is the following: Provide bounds on the effect of perturbing
P to P ∗ on the stationary behavior. The above problem can be phrased as follows: Can ‖π∗−π‖v

be approximated or bounded in terms of ‖P ∗ − P‖v?
In the following , we provide a simple bound for denumerable continuous-time Markov chains.

By (11) it holds that
Π∗ = Π + Π∗(Q∗ −Q)D.

Subtracting Π on both sides and taking v-norms yields

||Π∗ −Π||v = ||Π∗(Q∗ −Q)D||v.

Provided that condition (C) holds, it follows from Lemma 3.2 that

||Π∗ −Π||v = ||Π∗(Q∗ −Q)D||v
≤ cv

δN
||Π||v ||Q∗ −Q||v ||D||v.

The following lemma lists some bounds on perturbations.

Lemma 3.5

(i) Provided that (C) holds, we have

||Π∗ −Π||v ≤ cv
δN
||Π||v ||Q∗ −Q||v ||D||v.

13



(ii) Let Q be uniformizable with rate µ. Suppose that c and β, with 0 ≤ β < 1 exist such that
||(Pµ)n −Π||v ≤ cβn for all n, (in words, Pµ is v-norm ergodic). If (C) holds, then

||Π∗ −Π||v ≤ cv
δN
||Π||v ||Q∗ −Q||v c

µ(1− β)
.

(iii) Let Q and Q∗ be uniformizable with rate η. Suppose that c and β, with 0 ≤ β < 1 exist such
that ||(Pµ)n − Π||v ≤ cβn for all n, (in words, Pµ is v-norm ergodic). Then constants ck

exists such that for each k ≥ 2 it holds that

||Π∗ −Π||v ≤ ck||Π||v ||(P ∗η )k − P k
η ||v

c

η(1− βk)
.

Proof: The first part of the lemma has already been shown. For the second part of the lemma
follows by bounding the v-norm of D as in Lemma 2.6. For the third part of the lemma, note that
Πη is the ergodic projector of (Pη)k and Π∗η is the ergodic projector of (P ∗η )k, which yields

Π∗ −Π = Π∗((P ∗η )k − (Pη)k)Dη,k,

where
Rη,k(0) = Π∗((P ∗η )k − (Pη)k)Dη,k.

Applying Lemma 2.11 for A = (P ∗η )k, B = (Pη)k, C = Dη,k, F = Π and G = Π∗ yields

||Rη,k(0)||v ≤ cv
δN,k

||Π||v ||(P ∗η )k − (Pη)kDη,k||v,

and we arrive at

||Π∗ −Π||v ≤ cv
δN,k

||Π||v ||(P ∗η )k − (Pη)k||v ||Dη,k||v. (20)

Bounding the v-norm of Dη,k as in Lemma 2.6 yields

||Dη,k||v ≤ c

η(1− βk)
.

Inserting this into (20) proves the claim.
¥

There exists an extensive literature on PAMC for finite state Markov chains; see, for example,
[19, 24, 26] for recent results and the excellent overview in [21]. Best to our knowledge, Lemma 3.5
is a first result on a perturbation bound for a denumerable continuous-time Markov chain.

The statement in Lemma 3.5 is also of interest for the study of strong stable Markov chains (for
details see [15]) as it states that any uniformizable continuous time Markov with v-norm ergodic
subordinate chain is strongly stable provided that condition (C) holds.

4 Numerical Algorithm for Finite Markov Chains

Throughout this section we assume that S is finite. In the following we will show how the
continuous-time exchange formula can be made fruitful for numerical approximations. The nu-
merical algorithm is presented in Section 4.1. The performance of the algorithm is illustrated in
Section 4.2 with numerical examples.
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4.1 The Algorithm

The following result is the version of Lemma 2.11 for finite state Markov chains.

Lemma 4.1 Under (C) it holds that for any v ≥ 1 that

(i) ‖R(k − 1)‖v ≤ c1δN
‖T (k)‖1 for any k, with 1 the vector with all elements equal to one.

(ii) limk→∞H(k) = Π
∑∞

n=0((Q
∗ −Q)D)n = Π.

(iii) ρ ∈ R and δ < 1 exist such that ‖((Q∗ −Q)D)k‖v < ρδk for all k.

(iv) For all k it holds that ‖T (k)‖v < ρδk||Π||v, with ρ and δ as in (iii).

In addition, condition (C) and (ii) are equivalent.

With Lemma 4.1 we arrive at the following numerical approach. First we search for N such
that 1 > δN

def= ||((Q∗ − Q)DN ||v, which implies that (C) holds for N and δN . In words, we
establish the minimal power of ((Q∗ −Q)D) that yields geometrical convergence of H(n). Then,
we choose a precision ε up to which we want to approximate Π∗. The algorithm computes the
elements T (k) of H(n) until our upper bound for R(k), given by cv

δN
||((Q∗ − Q)D)k+1||v, drops

below ε.
We can now describe an algorithm that yields an approximation for π∗ with ε precision.

Algorithm 1

Chose precision ε > 0. Set k = 1, T (1) = Π(Q− P )D and H(0) = Π.

Step 1: Find N such that ||((Q∗ −Q)D)N ||v < 1. Set δN = ||((Q∗ −Q)D)N ||v and compute

cv
δN

=
1

1− δN

∥∥∥∥∥
N−1∑

k=0

((Q∗ −Q)D)k

∥∥∥∥∥
v

.

Step 2: If
cv
δN
‖T (k)‖v < ε,

the algorithm terminates and H(k − 1) yields the desired approximation. Otherwise, go to step 3.

Step 3: Set H(k) = H(k − 1) + T (k). Set k := k + 1 and T (k) = T (k − 1)(Q∗ −Q)D. Go to step
2.

As shown in Lemma 4.1 the above algorithm terminates geometrically fast. In case S is finite,
all norms are equivalent with respect to norm ergodicity and, without loss of generality, we take
v = 1.

4.2 Example: Approximating the Retrial-Queue through Simple Queues

Objective of this section is to provide an algorithm for the ergodic distribution of a queueing
process with impatient customers who recall after they hung up. The optimization of such a
system was so far hindered by the fact that a representation of the stationary distribution was not
available. But by applying the series approximation limn→∞H(n) introduced in section 3, we can
approximate Π∗.
Let X ∗ be the ergodic queue-length process with states (x1, x2)t ∈ S

def= N0×N0 where x1 denotes
the sum of customers in service and waiting in the queue and x2 refers to the impatient customers
intending to recall. We regard this model as an open Jackson network with two nodes. External
arrivals - modeling first callers - enter the system with rate λ at the first node where they are
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served by c servers with each providing service at rate µ, where they wait for their service or
abandon if their waiting time exceeds their exponentially-α distributed patience. Customers who
hung up are considered to enter a second node - the orbit - which they leave by recalling after an
exponentially-β distributed time. Therefore the first node is an M/M/c+M queue while the latter
one is an M/M/∞ queue. Transition rates for x, y ∈ S are given as follows

q∗x,y =





λ y = (x1 + 1, x2), x1, x2 ≥ 0
min{x1, c}µ y = (x1 − 1, x2), x1 ≥ 1, x2 ≥ 0
max{x1 − c, 0}α y = (x1 − 1, x2 + 1), x1 ≥ 1, x2 ≥ 0
x2β y = (x1 + 1, x2 − 1), x1 ≥ 0, x2 ≥ 1
−(λ + min{x1, c}µ + max{x1 − c, 0}α + x2β) y = (x1, x2), x1, x2 ≥ 0
0 otherwise.

(21)
An overview of the system provides Figure 1.

Insert Figure 1 here.

Like stated before, a direct computation of the stationary distribution is not possible. Hence,
we introduce a related process X with x1 the number of customers waiting or being served in an
M/M/c queue and x2 the number of customers being served in an independently acting M/M/∞
queue. The arrival and service rates of the first queue remain the same as in the initial model while
external customers enter the M/M/∞ queue at rate α and leave the system after being served at
rate x2β, see Figure 2.

Insert Figure 2 here.

Therefore it holds for the transition rates with x, y ∈ S

qx,y =





λ y = (x1 + 1, x2), x1, x2 ≥ 0
min{x1, c}µ y = (x1 − 1, x2), x1 ≥ 1, x2 ≥ 0
α y = (x1, x2 + 1), x1, x2 ≥ 0
x2β y = (x1, x2 − 1), x1 ≥ 0, x2 ≥ 1
−(λ + min{x1, c}µ + α + x2β) y = (x1, x2), x1, x2 ≥ 0
0 otherwise.

(22)

and we have the joint ergodic distribution

πx =




∞∑

k=0

cmin{c−k,0}
(

λ
µ

)k

min{k, c}!




−1

cmin{c−x1,0}
(

λ
µ

)x1

min{x1, c}! e−
α
β

(
α
β

)x2

x2!
, x ∈ S. (23)

To receive the stationary distribution of our initial model we have to compute the remaining parts
of H(n) first. From (21) and (22) we get the entries of (Q∗ −Q) as follows

(Q∗ −Q)x,y =





−α y = (x1, x2 + 1), x1, x2 ≥ 0
max{x1 − c, 0}α y = (x1 − 1, x2 + 1), x1 ≥ 1, x2 ≥ 0
−x2β y = (x1, x2 − 1), x1 ≥ 0, x2 ≥ 1
x2β y = (x1 + 1, x2 − 1), x1 ≥ 0, x2 ≥ 1
α−max{x1 − c, 0}α y = (x1, x2), x1, x2 ≥ 0
0 otherwise.
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We illustrate Algorithm 1 with the following example. The arrival rate of external arrivals is
λ = 3 and there are c = 3 servers each providing service at rate µ = 1. Customers abandon with
rate α = 0.5 and customers who abandoned leave the orbit in order to recall with rate β = 3.
Furthermore, we have assumed that the service center has a total capacity of N1 = 4 and orbit of
N2 = 6. Customers that find upon arrival to the service center or the orbit no available space are
lost. The performance measure we are interested in is the mean stationary number of customers
at the service center, i.e., customers in orbit are not counted. More formally, let w(x, y) = x
for x, y ∈ S, our goal is to approximately compute π∗w. Figure 3 shows the absolute error in
percentage for predicting π∗w by H(n)w, i.e., the figure plots |π∗w−H(n)|/π∗w as a mapping of
n. The numerical value of πw = 2.4967.

Insert Figure 3 here.

Algorithm 1 terminates whenever cv
δN
‖T (n)‖v drops below ε. For example, taking ε = 0.01,

the algorithm will compute π∗w up to a precision of ±0.01. The number of elements of H(n)
required for achieving this precision is illustrated in Figure 4, where the dotted line represents ε.

Insert Figure 4 here.

As can be seen from Figure 4, H(13) yields the desired precision and increasing the precision
to, say 0.005, would lead to H(15). For the sake of completeness we state the values required in
Algorithm 1. For the above example, we obtained N = 11, δN = 0.9179 and c1δN

= 201.2311.
As we have mentioned earlier, for finite state Markov chains, Algorithm 1 can also be formulated

for the subordinate chain using the subordinate exchange formula. The algorithmic complexity
of both algorithms will be identical, since for both algorithms the main numerical work is in
computing Π and D.

5 Functional Series Expansion

In this section we present a functional version of the series expansion that allows to obtain Π as
function of θ, where θ is a parameter of Q. The functional model is introduced in Section 5.1. The
application to performance evaluation of finite state Markov chains is presented in Section 5.2.
Eventually, we illustrate the performance of the algorithm in Section 5.3 with numerical examples.

5.1 The Basic Model

As has already been noted in Section 3.3, the elements of Q are typically linear mappings of the
rates of the Markov process. Consider two generator matrices Q∗ and Q and define

Qθ = θQ∗ + (1− θ)Q, θ ∈ [0, 1].

Denote the stationary distribution associated with Qθ by Πθ and note that Π∗ = Π1 and Π = Π0.
The basic model implies that

Qθ+∆ −Qθ = ∆(Q∗ −Q).

Inserting the above representation for Qθ+∆ −Qθ into (11) yields

Πθ+∆ = Πθ

n∑

k=0

∆k
(
(Q∗ −Q)Dθ

)k + ∆k+1Πθ+∆

(
(Q∗ −Q)Dθ

)n+1
,

with Dθ the deviation matrix associated with Qθ. Provided that R(n) tends to zero as n tends to
infinity, one obtains

Π∆+θ = Πθ

∞∑

k=0

∆k
(
(Q∗ −Q)Dθ

)k
, (24)

17



which is noticeably the Taylor series expansion of Πθ developed at point θ. Taylor series expansions
of Markov chains are topic of active research. A Taylor series expansion for irreducible discrete-
time Markov chains on denumerable state space can be found in [5]. This result has been extended
to v-norm ergodic discrete-time Markov chains on general state space in [10]. For discrete-time
Markov chains on denumerable state space with several ergodic classes, a Taylor series expansion
can be found in [1].

Developing the above equation at θ = 0, yields

Π∆ = Π
n∑

k=0

∆k
(
(Q∗ −Q)D

)k + ∆k+1Π∆

(
(Q∗ −Q)D

)n+1
. (25)

We call the presentation in (11) the continuous-time exchange formula. We separate (11) into the
series approximation of degree n

H∆(n) def= Π
n∑

k=0

∆k
(
(Q∗ −Q)D

)k

and remainder term
R∆(n) def= Π∗∆n+1

(
(Q∗ −Q)D

)n+1
.

5.2 The Algorithm

For this section we assume that the state space S is finite. Following the line of thought put
forward in Section 4, we obtain the following algorithm for approximating π∆ with ε precision,
where T∆(k) = ∆kΠ((Q∗ −Q)D)k denotes the kth element in H∆(n) .

Algorithm 2

Chose precision ε > 0. Set k = 1, T∆(1) = ∆Π(Q∗ −Q)D and H∆(0) = Π.

Step 1: Find N such that ||((Q∗ −Q)D)N ||1 < 1. Set δN = ||((Q∗ −Q)D)N ||1 and compute

c1δN
=

1
1− δN

∥∥∥∥∥
N−1∑

k=0

((Q∗ −Q)D)k

∥∥∥∥∥
1

.

Step 2: If
c1δN

‖T∆(k)‖v < ε,

the algorithm terminates and H∆(k − 1) yields the desired approximation. Otherwise, go to step
3.

Step 3: Set
T∆(k + 1) = T∆(k)(Q∗ −Q)D

and H∆(k) = H∆(k − 1) + T∆(k). Let k := k + 1 and go to step 2.

The above algorithm is not guaranteed to yield the desired approximation, which stems from
the fact that |∆| may lay outside the radius of convergence of the series in (25). However, 1/δN

as computed by the above algorithm yields a lower bound for radius of convergence of H∆(n) to
the true function and thus an indication of the maximal value of |∆|.
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5.3 Example: Functional Dependence of the Retrial Queue on Impa-
tience Rate

We illustrate Algorithm 2 with the following example. The arrival rate of external arrivals is λ = 3
and there are c = 3 servers with each providing service at rate µ = 1. Customers who abandoned
leave the orbit in order to recall with rate β = 3. Furthermore, we have assumed that the service
center has a total capacity of N1 = 4 and orbit of N2 = 6. Customers that find upon arrival
to the service center or the orbit no available space are lost. The performance measure we are
interested in is the mean stationary number of customers at the service center, i.e., customers in
orbit are not counted. More formally, let w(x, y) = x for x, y ∈ S, our goal is to approximately
compute π∗w. Let Q∗ be the generator matrix of the finite state space version of the M/M/c+M
system with abandonment and retrial with customers abandon with rate α∗ = 0.9 and let Q be
the generator matrix of the same system except for the abandon rate which is set to α = 0.2.

Insert Figure 5 here.

Figure 5 shows the absolute error in percentage for predicting π∗w by H∆(n)w, i.e., the figure
plots |π∗w − H∆(n)|/π∗w as a mapping of ∆ ∈ [0, 1.4] for n = 4. Note that the radius of
convergence of H∆(n) is given by α+(α∗−α)δN . The values of auxiliary variables in Algorithm 1
are N = 4, δN = 0.7469 and c1δN

= 7.2953. Hence, H∆(n)w converges as n tends to ∞ to the true
mean stationary queue length for ∆ < 1/δN = 1.3389. From α = 0.2, we conclude that πα′w can
be approximated by H∆(n) for all α′ < 1/δN +α = 1.5389. This range is indicated by the vertical
dotted line in Figure 5.

Suppose that one is interested in the maximal abandon rate that will result in a stationary
mean queue length of, say, 3.72. Then solving 3.72 = H∆w yields ∆ = 0.523 and the maximal
value for α is given by α′ = 0.723, see the arrows in Figure 5. Hence, α′ solves the optimization
problem maxα παw ≤ 3.72.

Figure 6 to Figure 8 show the decay in our bound on the remainder term as a mapping of n
for various values of ∆. The horizontal line indicates the precision value ε = 0.01. The minimal
number n for which H∆(n) has to be evaluated in order to guarantee |πα+∆w−H∆(n)w| < ε can
be found to be the first integer such that the bound on the remainder drops below the horizontal
line. As the figures illustrate, for ∆ = 0.4 we have n = 5, for ∆ = 0.8 we have n = 7 and for
∆ = 1.2 we have n = 11.

Insert Figure 6 to Figure 8 here.

A lower bound for the radius of convergence of H∆(n) is given by δN . Hence, decreasing δN

increases the range for ∆ for which we can be sure that H∆(n) converges to the correct value.
This can be achieved by adjusting the computation of δN in Algorithm 2. For example, if a radius
of convergence of at least, say, r > 0 is required, then Step 1 in Algorithm 1 has to be modified as
follows:

Step 1(b) Find N such that ||((Q∗ −Q)D)N ||v < 1/r. Set δN = ||((Q∗ −Q)D)N ||v and compute

cv
δN

=
1

1− δN

∥∥∥∥∥
N−1∑

k=0

((Q∗ −Q)D)k

∥∥∥∥∥
v

.

By (??), Step 1(b) will terminate in finite time for any r > 0. In other words, H∆(n) converges
to the true function for any ∆ ∈ R. Obviously Step 1(b) will require a longer time then Step 1 as
the initial phase of ||((Q∗−Q)D)n||v before geometric decay occurs might be rather long. On the
other hand, simply taking α∗ larger, increases ||Q∗ −Q||v and will also decrease the performance
of the algorithm. The analysis of the trade-off between increased radius of convergence and longer
initial phase in Step 1(b) of the algorithm is topic of further research.
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[1] E. Altman, K.E. Avrachenkov, and Núñez-Queija: Perturbation analysis for denumerable
markov chains with application to queueing models. Advances in Applied Probability, 36:839–
853, 2004.

[2] A.A. Borovkov and A. Hordijk: On normed ergodicity of Markov chains, Technical Report
MI 2000-40 Leiden University, 2000.

[3] A.A. Borovkov and A. Hordijk: Characterization and sufficient conditions for normed ergod-
icity of Markov chains, Advances in Applied Probability, 36:227-242, 2004.

[4] Xi-Ren Cao, Han-Fu Chen: Perturbation realization, potentials, sensitivity analysis of Markov
processes. IEEE Transactions on Automatic Control, 42:1382-1393, 1997.

[5] Xi-Ren Cao: The Maclaurin Series for performance unctions of Markov chains. Advances in
Applied Probability, 30:676-692, 1998.

[6] G.E. Cho and C.D. Meyer: Comparison of perturbation bounds for the stationary distribution
of a Markov chain. Linear Algebra and its Applications, 335:137–150, 2001.

[7] P. Coolen-Schrijner, E. van Doorn: The deviation matrix of a continuous-time Markov chain.
Probability in the Engineering and Informational Sciences, 16:351-366, 2002.

[8] R. Dekker and A. Hordijk: Average, sensitive and Blackwell optimal policies in denumer-
able Markov decision chains with unbounded rewards. Mathematics of Operations Research,
13:395-421, 1988.

[9] R. Dekker, A.Hordijk and F.M. Spieksma: On the relation between recurrence and ergodic-
ity properties in denumerable Markov decision chains. Mathematics of Operations Research,
19:539-559, 1994.

[10] B. Heidergott and A. Hordijk: Taylor series expansions for stationary Markov chains. Ad-
vances in Applied Probability, 35:1046-1070, 2003.

[11] B. Heidergott, A. Hordijk, M. van Uitert: Series Expansions for Finite-State Markov Chains.
Probability in the Engineering and Informational Sciences, to appear, 2007.

[12] A. Hordijk and R. Dekker, Average, sensitive and Blackwell optimal policies in denumer-
able Markov decision chains with unbounded rewards, Report No. 83-36, Institue of Applied
Mathematics and Computing Science, Leiden University, 1983.

[13] A. Hordijk and F.M. Spieksma: On ergodicity and recurrence properties of a Markov chain
with an application to an open Jackson network. Advances in Applied Probability, 24:343-376,
1992.

[14] A. Hordijk and A.A. Yushkevich: Blackwell optimality in the class of all policies in Markov
decision chains with a Borel state space and unbounded rewards. Mathematical Methods of
Operations Research, 50:421-448, 1999.

[15] N. Kartashov: Strong Stable Markov Chains. VSP, Untrecht, 1996.

[16] F.P. Kelly: Reversibility and Stochastic Networks. Wiley, Chichester, 1979.

[17] J.G. Kemeny, J.L. Snell: Finite Markov Chains. Princeton, New York, 1960.

[18] J.G. Kemeny, J.L. Snell: Potentials for denumerable Markov Chains. Journal of Mathematical
Analysis and Applications, 3:196-260, 1960.

[19] S. Kirkland: Conditioning properties of the stationary distribution for a Markov chain. Elec-
tronic Journal of Linear Algebra, 10:1-15, 2003.

20



[20] S. Lipman: On dynamic programming with unbounded rewards. Mangement Science, 21:1225-
1233, 1974/75

[21] G. Cho and C. Meyer: Comparision of perturbation bounds for the stationary distribution of
a Markov chain. Linear Algebra and its Applications, 335:137-150, 2001.

[22] S.P. Meyn and R.L. Tweedie: Markov Chains and Stochastic Stability, Springer, London,
1993.

[23] E. Schweitzer: Perturbation theory and finite Markov chains. Journal of Applied Probability,
5:401-413, 1968.

[24] E. Solan, N. Vieille: Perturbed Markov chains. Journal of Applied Probability, 40:107-122,
2003.

[25] R. Syski: Ergodic potential. Stochastic Processes and Their Application, 7:311-336, 1978.

[26] A. Mitrophnov: Sensitivity and convergence of uniformly ergodic Markov chains. Journal of
Applied Probability, 42:1003-1014, 2005.

21



-arriving
customers

λ queue

?

abandon-
ment

α

6

retrial

β

orbit

@
@

@
@R

XXXXz
¡

¡
¡

¡µ

server 1

server 2

server c

...

-µ

-µ

-µ

served
customers

Figure 1: Structure of an M/M/c+M queueing system with abandonment and retrial

22



-arriving
customers

λ queue
@

@
@

@R

XXXXz
¡

¡
¡

¡µ

server 1

server 2

server c

...

-µ

-µ

-µ

served
customers

-arriving
customers

α
orbit HHHHj

-

server 1

server 2

...

-β

-β

Figure 2: Structure of an M/M/c and M/M/∞ queueing system

23



4 6 8 10 12 14 16
0

0.5

1

1.5
%

 E
rr

or
 in

 A
ve

ra
ge

 Q
ue

ue
 L

en
gt

h

Order of Approximation n

         Approximated Retrial Queue with λ = 3, α = 0.5, µ = 1, β = 3, N
1
 = 4, N

2
 = 6

Figure 3: Error Percentage for Predicting the Stationary Queue Length via H(n)

24



10 11 12 13 14 15 16
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
U

pp
er

 B
ou

nd
 fo

r 
R

em
ai

nd
er

Order of Approximation n

         Approximated Retrial Queue with λ = 3, α = 0.5, µ = 1, β = 3, N
1
 = 4, N

2
 = 6

Figure 4: Bound on Remainder Term as Function of n

25



0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
3.68

3.69

3.7

3.71

3.72

3.73

3.74

3.75

3.76

3.77

A
ve

ra
ge

 Q
ue

ue
 le

ng
th

Impatience Rate α

Approximated Retrial Queue with λ = 3, µ = 1, α = 0.2, β = 3, N
1
 = 5, N

2
 = 6

Approx

True

Figure 5: Error Percentage for Predicting the Stationary Queue Length via H∆(4)

26



4 6 8 10 12 14
0

0.01

0.02

0.03

0.04

0.05

0.06

U
pp

er
 B

ou
nd

 fo
r 

R
em

ai
nd

er

Order of Approximation n

Approximated Retrial Queue with λ = 3, µ = 1, α = 0.2, β = 3, N
1
 = 5, N

2
 = 6

∆= 0.4

Figure 6: Bound on Remainder Term as Function of n

27



6 7 8 9 10 11 12 13 14
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

U
pp

er
 B

ou
nd

 fo
r 

R
em

ai
nd

er

Order of Approximation n

Approximated Retrial Queue with λ = 3, µ = 1, α = 0.2, β = 3, N
1
 = 5, N

2
 = 6

∆= 0.8

Figure 7: Bound on Remainder Term as Function of n

28



8 9 10 11 12 13 14
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

U
pp

er
 B

ou
nd

 fo
r 

R
em

ai
nd

er

Oder of Approximation n

Approximated Retrial Queue with λ = 3, µ = 1, α = 0.2, β = 3, N
1
 = 5, N

2
 = 6

∆= 1.2

Figure 8: Bound on Remainder Term as Function of n

29


