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1 Introduction

Markov processes are widely used in applied probability for studying the timedependent
behavior of stochastic models. Typically, Markov processes are analyzed under the as-
sumption that the process is homogeneous. In words, the transition dynamic is time
dependent. This assumption is often violated in applications. For example, consider a
simple call center with c agents and a single arrival stream of callers. Customers are
helped in first-come-first-served order and we are interested in the system behavior over a
fixed time period of length T , say, a day. Then, while the arrival stream can be assumed to
be Poisson the arrival rate of the process is time dependent: low intensity in the morning
hours, which increases over the morning and may fall down around lunch time. This can
be modeled as a inhomogeneous Poisson process with rate λ(t), for a formal definition see
later in the text.

In this paper we will provide a perturbation analysis for inhomogeneous Markov pro-
cesses. Let Xθ = {Xθ(t), t ≥ 0} be a continuous-time Markov process on a (at most)
denumerable state space S depending on some real-valued parameter θ. Throughout this
paper we will denote the transition probability matrix of X(0) to (t) by Pθ(0, t) and the
associated generator by Qθ(t), i.e.,

lim
∆→0

1

∆
(Pθ(t, t+ ∆)− I) = Qθ(t).

Throughout the paper we assume that Q(t) is conservative, i.e.,
∑

ij qij(t) = 0 for all
j ∈ S. In our analysis we investigate the dependence of Pθ(0, t) on θ. Specifically, our
starting point will be that Qθ(t) is differentiable with respect to θ in a suitable sense
(to be defined later in the text) and we will deduct formulas for dPθ(0, t)/dθ from this
derivative. We will illustrate our approach with models from biology, finance and the
afore mentioned call-center model.

The contribution of the paper is the following. We derive a closed form representation
for dP (0, t)/dθ. We show how this formula can be used to (i) derive a simple gradient
estimators for transient performance characteristics, and (ii) to obtain bounds on the
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transient performance sensitivities. Numerical examples will illustrate the numerical be-
havior of the estimators. In addition, we show that for relevant case the derivative of
Qθ(t) commutes in a suitable way with Qθ(t), which leads to a significant simplification
of the estimators.

The paper is organized as follows. In Section 2 we provide a discussion of the lit-
erature. Perturbation analysis of Markov processes with time-dependent generators is
discussed in Section 3. The particular class of Markov processes for which the derivative
of the generator commutes with the generator itself is analyzed in Section 4. Higher
oder derivatives are discussed in Section 5. In Section 6 we discuss several examples in
detail. We conclude the paper with a numerical study of the application of our results to
sensitivity analysis of a (simple) call-center in Section 7.

2 Discussion of the literature

Ad an quasi stationary distributions, also cite Massey and Whitt...
The main approaches for gradient estimation are infinitesimal perturbation analysis

(IPA) and its variants/extensions, which is a as sample-path based approach [18, 14, 15,
16, 17, ?], the score function method [19, 20, 21], with relates gradient estimation to
differentiation the likelihood ratio of a sample realization, and measure-valued differen-
tiation, which is an operator based approach to sensitivity analysis of Markov processes,
[21, 22, ?]. While perturbation analysis for homogeneous Markov processes is covered by
the afore mentioned methods, best to our knowledge no results are known for gradient
estimation of inhomogeneous Markov processes. The gap in the literature stems from the
fact that for inhomogeneous processes a perturbation of a rate function cannot in a direct
way be interpreted as a perturbation of the holding time of a state in the sample path (as
IPA would require) nor as a change in the likelihood ration (as the score function would
require).

It is worth noting that there exists a stream of active research on perturbation analysis
of inhomogeneous Markov processes for so-called singularly perturbed Markov processes,
see [13] and the references therein. Here, the Markov processes is assumed to have several
ergodic classes and θ parameterizes the rate with which the process jumps from one
ergodic class to another. Letting θ tend to zero the process will get stuck in one of the
ergodic classes. Investigating the limiting behavior of the Markov processes as θ tends to
zero is the topic of this research.

3 Perturbation Analysis of Inhomogenuous Markov

Processes

Let X = {Xt, t ≥ 0} be a continuous-time ergodic Markov process on a denumerable
state space S describing the nominal system. Throughout this paper we will denote its

2



transition matrix by P (u, t), for 0 ≤ u < t, more specifically,

[P (u, t)](ij) = E
[
Xt = j

∣∣Xu = i
]
, i, j ∈ S,

and we set P (0, 0) = I. We first summarize basic properties of homogeneous Markov pro-
cesses. The infinitesimal generator of an homogeneous Markov transition matrix P (0, t)
is denoted by Q, i.e.,

lim
∆↓0

1

∆
(P (t)− P (0)) = Q,

where P (0) is the identity operator. We assume that X has a unique stationary distri-
bution, denoted by π. It is well known that this implies πQ = 0. Moreover it holds
that

P (t) = eQt =
∞∑
n=0

tn

n!
Qn, t ≥ 0, (1)

which implies that
P (t) = I +Qt+ o(t2),

where I denotes the identity matrix.

Definition 1. A generator matrix Q is called uniformizable with rate µ if λ = supj |qjj| <
∞.

While any finite dimensional generator matrix is uniformizable a classical example
of a Markov process on denumerable state space that fails to have this property is the
M/M/∞ queue. Note that if Q is uniformizable with rate λ, then Q is uniformizable with
rate η for any η > λ.

Let Q be uniformizable with rate µ and introduce the Markov chain Pλ as follows

[Pλ]ij =

{
qij/λ i 6= j

1 + qii/λ i = j,
(2)

for i, j ∈ S, or, in shorthand notation,

Pλ = I +
1

λ
Q,

then it holds that

P (0, t) = e−λt
∞∑
n=0

(λt)n

n!
(Pλ)

n, t ≥ 0. (3)

The Markov chain Xλ = {Xλ
n : n ≥ 0} with transition probability matrix Pλ is called

the sampled chain. The relationship between X and Xλ can be expressed as follows. Let
Nλ(t) denote a Poisson process with rate λ, then Xλ

Nλ(t) and Xt are equal in distribution
for all t ≥ 0.

The classical theory of homogeneous Markov chains extends the the class of inhomo-
geneous continuous time Markov chains as follows. Let p(t) denote the distribution of
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Xt, for t ≥ 0, with p(0) being the initial distribution, then by the Kolmogorov forward
equations for p(t) it holds that

d

dt
p(t) = pθ(t)Qθ(t), t > 0,

and also

Pθ(s, t) = exp

(∫ r

s

Qθ(u)du

)
, t > s ≥ 0.

This defines a family of operators {Qθ(t) : t ≥ 0}, where we assume that Qθ(t) is
measurable in t with respect to the Borel field on [0,∞), and bounded as a mapping in t.
For non-homogeneous Markov chains the concept of uniformizability (see Definition 1) is
extended as follows.

Definition 2. The bounded family of operators {Q(t) : t ≥ 0} is called time-varying
uniformizable if

λ = sup
0≤s≤t

sup
j
|qjj(s)| <∞.

The family of operators {Q(t) : t ≥ 0} is said to have finite support if for any row of Q(t)
contains only finitely many non-zero elements for any t.

A time-inhomogeneous Markov chain that is time-varying uniformizable can be inter-
preted as time-inhomogeneous discrete time Markov chain, where the jump times follows
a Poisson-λ-process. Provided there is jump at time t, then the transition triggered by
this jump is given by

Pλ(t) = I +
1

λ
Q(t) . (4)

Suppose that n points of the Poisson-λ-process fall into [u, t + u], for u ≥ 0, and denote
these points by t1, . . . , tn. Then the transition probability P (u, t + u), from the initial
state to the state at time t is given by Pλ(t1)Pλ(t2), . . . , Pλ(tn). It can be shown that

P (u, u+ t) =
∞∑
n=0

e−λt(λt)n

n!︸ ︷︷ ︸
number of jumps

∫
· · ·
∫

u≤t1≤t2≤...≤tn≤t+u

n!

tn︸ ︷︷ ︸
location of jumps

n∏
i=1

Pλ(ti)︸ ︷︷ ︸
embedded jump chain

dt1 . . . dtn,

see [11]. Recall that we denote the inhomogeneous Markov processes with generator Q(t)
by Xt. In this paper we carefully distinguish the over all transition probability from X0

to Xt given by [
n∏
i=1

Pλ(ti)

]
(X0, Xt),

provided that there are n Poisson-λt-process epochs at time instances t1 ≤ t2 ≤ · · · ≤ tn,
and the sample path probability of observing the state sequence X0, Xt1 , . . . , Xtn given by

n∏
i=1

[
Pλ(ti)

]
(Xti−1

, Xti),
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provided that there are n Poisson-λt-process epochs at time instances t1 ≤ t2 ≤ · · · ≤ tn,
From the above it follows that

E [f(XT )] =
∞∑
n=0

e−λt(λt)n

n!

n!

tn
×

∫
· · ·
∫

0≤t1≤t2≤...≤tn≤T

∑
x∈S

f(x)

[
n∏
i=1

Pλ(ti)

]
(x0, x)dt1 . . . dtn,

where x0 is the initial value of Xt, i.e., X0 = x0, and

E
[∫ T

0

f(Xt)dt

]
=

∞∑
n=0

e−λt(λt)n

n!

n!

tn
×

∫
· · ·
∫

0≤t1≤t2≤...≤tn≤T

∑
x1,...,xn∈S

n∑
k=0

f(xk)(tk+1 − tk)

[
n∏
i=1

(Pλ(ti))(xi−1, xi)

]
dt1 . . . dtn,

with t0 = 0 and tn+1 = T . [0]
This leads to the following simulation algorithm for time integrals of f(Xt) over [0, T ].

Algorithm 1 Let p(0) denote the initial distribution of {Xt : 0 ≤ t ≤ T}, and sample
X(0) according to p(0).

• Simulate a Poisson-λ-process up to time T , which yields Nλ time instances 0 < t1 <
t2 < · · · < tNλ < T , and let t0 = 0 and tNλ+1 = T .

• For k = 0 to k = n, sample {Xk : 1 ≤ k ≤ n} where the transition probability from
Xk−1 to Xk is given by Pλ(tk).

Then it holds that

E
[∫ T

0

f(Xt)dt

]
= E

[
Nλ∑
k=0

f(Xk)(tk+1 − tk)

]
.

Note that one can alternative simulate a Poisson-λ-process, which yields by construction
a sequence t1, . . . , tNλ , and sample Nλ.

Let v be real-valued mapping from S to R with infx v(x) = 1. The v-norm on S of a
function f from S to R is defined as

||f ||v = sup
x∈S

|f(x)|
v(x)

.

Note that the above definition implies

|f(x)| ≤ ||f ||v v(x), x ∈ S. (5)
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The v-norm is extend to measures µ on S as follows. For µ ∈ SR, we set

||µ||v =
∑
x∈S

v(x)|µ(x)|,

and the v-norm of a matrix A in Sn×n is defined as

||A||v = sup
x

1

v(x)

∑
y

v(y)|Axy|.

The following lemma establishes a result for v-norms that we will frequently use in the
following.

Lemma 1. For µ, f ∈ SR and A in Sn×n it holds that

|µAf | ≤ ||µ||v ||A||v ||f ||v.

Proof: By computation,

|µAf | =

∣∣∣∣∣∑
i

µi

(∑
j

Aijfj

)∣∣∣∣∣
≤

∑
i

|µi|

(∑
j

|Aij| |fj|

)

=
∑
i

|µi|

(∑
j

|Aij| vj
|fj|
vj

)

≤
∑
i

|µi|

(∑
j

|Aij| vj

)
||f ||v

≤
∑
i

|µi|

(
vi

1

vi

∑
j

|Aij| vj

)
||f ||v

≤
∑
i

|µi|vi||A||v ||f ||v

= ||µ||v ||A||v ||f ||v,

which proves the claim. �
We denote the set of real-valued mappings from S to R with v-norm bounded by some

fixed K by
Dv = {f ∈ SR : ||f ||v ≤ K}

In the following we turn to sensitivity analysis. To begin with the analysis we first
have to reflect on the concept of differentiability as we are dealing with Markov chains
on a denumerable state space. Indeed, for a finite state space differentiability of Q (resp.
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Pλ) can be defined as element-wise differentiability of Q. For a denumerable state-space
we have to define differentiability in the weak sense. We call Q Dv-differentiable if

d

dθ
[Qf ](i) =

∑
j

d

dθ
Q(i, j)f(j), (6)

for all j ∈ S and all f ∈ Dv. We define v-differentiability of Pλ in the same way.

Remark 1. If S is finite, then element-wise differentiability of Q(t) with respect to θ
implies v-differentiability for any v : S → R. If S is denumerable, the v-differentiability
of Q is implied by the following condition:

(C) The entries of Q(t) are continuously differentiable with respect to θ for all t on an
open neighborhood Θ of θ and the element-wise derivatives in reach row of Q(t)v
are uniformly bounded on Θ for all t i.e., for each t and each row i there exists a
sequence {aij(t)} such that

sup
θ∈Θ

d

dθ

∣∣∣[Q(t)](ij)
∣∣∣v(j) ≤ aij(t)

for all j and t such that ∑
j

aij(t) <∞

for all j and t.

Indeed, condition (C) implies (6) since interchanging summation and differentiation in
(6) as the series of element-wise derivatives

∑
v(j)d[Q(t)](i, j)/dθ converges uniformly on

Θ and the partial sums of v(j)d[Q(t)](i, j)/dθ are continuous.

Lemma 2. Consider the family {Q(t) : t ≥ 0}. If Q(t) is Dv-differentiable then there
exist transition probability matrices P+

Q (t) and P−Q (t) such that for all f ∈ Dv it holds that

d

dθ

[
Q(t)f

]
= CQ(t)

(
P+
Q (t)f − P−Q (t)f

)
,

with CQ(t) being a matrix with diagonal elements

[CQ(t)](i, i) =
∑
j

max

(
d

dθ
[Q(t)](i, j), 0

)
for i ∈ S and otherwise zero

Proof: By definition the row sums ofQ(t) are zero. Hence, differentiation the elements
of Q(t), the row sums of the derivative matrix are also zero. Collect the positive elements
of Q′(t) in a matrix Q+(t) and the negative elements in a matrix Q−(t), i.e.,

[Q+(t)](i, j) = max

(
d

dθ
[Q(t)](i, j), 0

)
and [Q−(t)](i, j) = max

(
− d

dθ
[Q(t)](i, j), 0

)
,
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for i, j ∈ S. Since
d

dθ

∑
j

[Q(t)](i, j) =
∑
j

d

dθ
[Q(t)](i, j) = 0, (7)

it holds that ∑
j

[Q+(t)](i, j) =
∑
j

[Q−(t)](i, j) = ci(t),

for all i and t. We now introduce probability transition matrices P±Q (t) such that

[P+
Q (t)](i, j) =

1

ci(t)
[Q+(t)](i, j)

and

[P−Q (t)](i, j) =
1

ci(t)
[Q−(t)](i, j)

and we let CQ(t) be a diagonal matrix with entries [CQ(t)](i, i) = ci(t). In case that∑
j[Q

+(t)](i, j) = 0, we let [P±Q (t)](i, j) = 0 for j 6= i and [P±Q (t)](i, i) = 1, and
[CQ(t)](i, i) = 1.

Note that in the above line of argument we have implicitly used that interchanging
summation and differentiation in (7) is justified. While this is obvious for matrices with
finite support on each row, it follows matrices with infinite support on at least one row
by Dv-differentiability. �

Lemma 3. If Q(t) is Dv-differentiable, then so is Pλ(t) and it’s Dv-derivative is given by

d

dθ
Pλ(t) =

1

λ
CQ(t)(P+

Q (t)− P−Q (t)).

In addition. Pλ(t) is || · ||v-Lipschitz continuous, i.e., there exists a finite constant M such
that

||Pλ,θ+∆(t)− Pλ,θ(t)||v ≤ |∆|M.

Proof: Differentiating the expression in (4) and replacing dQ(t)/dθ by the difference
between probability transition kernels, see Lemma 2, yields

d

dθ
[Pλ(t)f ] =

d

dθ

((
I +

1

λ
Q(t)

)
f

)
=

1

λ
CQ(t)(P+

Q (t)f − P−Q (t)f),

which proves the first part of the lemma.
For the proof of the second part of the lemma, note that (Dv, || · ||v) is a Banach space.

The proof then follows from evoking the basic fact that weak differentiability on a Banach
space implies norm Lipschitz continuity with respect to the norm of the Banach space;
for details we refer to [7]. � [1]
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Lemma 4. Let Pλ(t) be Dv-differentiable for t ≥ 0. For any f ∈ Dv it holds for 0 ≤ t1 ≤
· · · ≤ tn that

d

dθ

(
n∏
i=1

Pλ(ti)

)
f =

n∑
j=1

j−1∏
i=1

Pλ(ti)

(
d

dθ
Pλ(tj)

) j−1∏
i=1

Pλ(ti)f

Proof: This is the product rule of Dv-differentiation. � [2]
Recall that p(0) denotes the initial distribution which is assumed to be independent

of θ.

Theorem 1. There exists an open neighborhood of θ, called Θ, such that {Qθ(t) : t ≥ 0}
is uniformly time-varying uniformizable on Θ, i.e.,

λ = sup
0≤s≤t

sup
j

∣∣Qθ(s)](j, j)
∣∣ <∞,

for all θ ∈ Θ. If Qθ(t) is Dv-differentiable of a neighborhood Θ of θ, and if

sup
u∈[0,t]

sup
θ∈Θ
||Pλ,θ(t)||v <∞,

then for all f ∈ Dv it holds that

d

dθ
p(0)P (0, t)f =

1

λ

∞∑
n=1

e−λt(λt)n

n!

n!

tn

n∑
j=1

∫
· · ·
∫

0≤t1≤t2≤...≤tn

CQ(tj)×

p(0)

((
j−1∏
i=1

Pλ(ti)P
+
Q (tj)

n∏
i=j+1

Pλ(ti)

)
f −

(
j−1∏
i=1

Pλ(ti)P
−
Q (tj)

n∏
i=j+1

Pλ(ti)

)
f

)
dt1 . . . dtn.

Proof: By simple algebra it holds∣∣∣∣∣p(0)
n∏
i=1

Pλ,θ+∆(ti)f − p(0)
n∏
i=1

Pλ,θ(ti)f

∣∣∣∣∣
=

n∑
j=1

∣∣∣∣∣p(0)

j−1∏
i=1

Pλ,θ+∆(ti)(Pλ,θ+∆(tj)− Pλ,θ(tj))
n∏

i=j+1

Pλ,θ(ti)f

∣∣∣∣∣ ,
with is bounded by Lemma 1 by

≤ ||p(0)||v|∆|nDn−1M ||f ||v,

with
D = sup

u∈[0,t]

sup
θ∈Θ
||Pλ(t)||v.
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Hence,

n!

tn

∫
· · ·
∫

0≤t1≤t2≤...≤tn

1

|∆|

n∑
j=1

∣∣∣∣∣
∫

0≤t1,...≤tn

(
n∏
i=1

Pλ,θ+∆(ti)f −
n∏
i=1

Pλ,θ(ti)

)
fdt1 · · · dtn

∣∣∣∣∣
≤ ||p(0)||v ||f ||vnDn−1M.

Let N(t) be Poisson-λt-distributed. Since

E
[
N(t)DN(t)−1

]
= λtDeλt(D1) <∞,

it follows from the Dominated Convergence Theorem that differentiation with respect
to θ and integrating with respect to the Poisson distribution can be interchanged. The
particular expression for the derivative then follows from Lemma 4. �

Theorem 2. Under the conditions put forward in Theorem 1, it holds for all f ∈ Dv that

d

dθ
E
[∫ T

0

f(Xt)dt

]
=

1

λ

∞∑
n=0

e−λt(λt)n

n!

n!

tn

∫
· · ·
∫

0≤t1≤t2≤...≤tn≤T

∑
x1,...,xn∈S

CQ(tj)
n∑
k=0

f(xk)(tk+1 − tk)×

(
j−1∏
i=1

[Pλ(ti)](xi−1, xi)[P
+
Q (tj)](xj−1, xj)

n∏
i=j+1

[Pλ(ti)](xi−1, xi)

−
j−1∏
i=1

[Pλ(ti)](xi−1, xi)[P
−
Q (tj)](xj−1, xj)

n∏
i=j+1

[Pλ(ti)](xi−1, xi)

)
dt1 . . . dtn.

Proof: By simple algebra it holds∣∣∣∣∣ ∑
x1,...,xn∈S

n∑
k=0

f(xk)(tk+1 − tk)

(
p(0)

n∏
i=1

[Pλ,θ+∆(ti)](xi−1, xi)− p(0)
n∏
i=1

[Pλ,θ(ti)](xi−1, xi)

)∣∣∣∣∣
≤ T

∑
x1,...,xn∈S

n∑
k=0

|f(xk)|

∣∣∣∣∣p(0)
n∏
i=1

[Pλ,θ+∆(ti)](xi−1, xi)− p(0)
n∏
i=1

[Pλ,θ(ti)](xi−1, xi)

∣∣∣∣∣
= T

n∑
k=1

∑
x1,...,xk∈S

∣∣∣∣∣p(0)
k∏
i=1

[Pλ,θ+∆(ti)](xi−1, xi)− p(0)
k∏
i=1

[Pλ,θ(ti)](xi−1, xi)

∣∣∣∣∣ |f(xk)|

= T
n∑
k=1

∑
x1,...,xk∈S

∣∣∣∣∣p(0)
k∑
j=1

j−1∏
i=1

[Pλ,θ+∆(ti)](xi−1, xi) ×

[Pλ,θ+∆(ti)](xi−1, xi)− [Pλ,θ(ti)](xi−1, xi))
k∏

i=j+1

[Pλ,θ(ti)](xi−1, xi)

∣∣∣∣∣ |f(xk)|

which is bounded by Lemma 1 by

≤ T ||p(0)||v|∆|n2Dn−1M ||f ||v,
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with
D = sup

u∈[0,t]

sup
θ∈Θ
||Pλ(t)||v.

Let N(t) be Poisson-λt-distributed. Since

E
[
(N(t))2DN(t)−1

]
= λtDeλt(D−1)(λtD + 1) <∞,

it follows from the Dominated Convergence Theorem that differentiation with respect
to θ and integrating with respect to the Poisson distribution can be interchanged. The
particular expression for the derivative then follows from Lemma 4. �

The result put forward in Theorem 2 leads to the following estimation algorithm.

Algorithm 2 Let p(0) denote the initial distribution.

• Simulate a Poisson-λ-process up to time T , which yields Nλ time instances 0 < t1 <
t2 < · · · < tNλ < T , and let t0 = 0 and tNλ+1 = T . Construct {Xk : 0 ≤ k ≤ Nλ+1}
according to Algorithm 1.

• For given state x, let X+
1 (x) be distributed according to P+

λ (x, ·) and X−1 (x) be
distributed according to P−λ (x, ·).

• For k ≥ 1, let the transition probability from X±k (x) to X±k+1(x) is given by Pλ(tk+1).

Then it holds that

d

dθ
E
[∫ T

0

f(Xt)dt

]
= E

[
Nλ∑
j=1

cj(Xj−1)

Nλ−j∑
k=1

(
f(X+

k (Xj−1))− f(X−k (Xj−1))
)

(tj+k − tj+k−1)

]
,

with cj(y) = (CQ(tj)/λ)yy. Note the the perturbed processes have the same jump epochs,
namely, tk, then the nominal process.

The above algorithm yields the following bound for the derivative.

Corollary 1. If |f | is bounded by c, then∣∣∣∣ ddθE
[∫ T

0

f(Xt)dt

]∣∣∣∣ ≤ 4c(λT )2 sup
u∈[0,t]

max
y

(CQ(u))yy.

Theorem 3. Under the conditions put forward in Theorem 1, it holds that

d

dθ
P (0, t) =

∫ t

0

P (0, u)Q′(u)P (u, t)du,

or, equivalently,
d

dθ
P (0, t) = tE

[
P (0, U)Q′(U)P (U, t)

]
,

with U uniformly distributed on [0, t] independent of everything else.
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Proof: By Lemma 2, we replace CQ(t)(P+
Q (t)−P−Q (t)) in the statement of Theorem 1

by (1/λ)Q′(t), which yields

d

dθ
P (0, t) =

∞∑
n=1

e−λtλn−1

n∑
j=1

∫
· · ·
∫

0≤t1≤t2≤...≤tn

(
j−1∏
i=1

Pλ(ti)Q
′(tj)

n∏
i=j+1

Pλ(ti)

)
dt1 . . . dtn.

Note that

n∑
j=1

∫
· · ·
∫

0≤t1≤t2≤...≤tn

(
j−1∏
i=1

Pλ(ti)Q
′(tj)

n∏
i=j+1

Pλ(ti)

)
dt1 . . . dtn

=
n∑
j=1

∫
· · ·
∫

0≤t1≤···≤tj−1≤u≤tj+1≤···≤tn

(
j−1∏
i=1

Pλ(ti)Q
′(u)

n∏
i=j+1

Pλ(ti)

)
dt1 . . . dtj−1 du dtj+1 . . . dtn,

relabeling the variables tj yields

=
n∑
j=1

∫
· · ·
∫

0≤t1≤···≤tj−1≤u≤tj≤···≤tn−1

(
j−1∏
i=1

Pλ(ti)Q
′(u)

n−1∏
i=j

Pλ(ti)

)
dt1 . . . dtj−1 du dtj . . . dtn−1

and the overall expression for the derivative becomes

d

dθ
P (0, t)

=
∞∑
n=0

e−λtλn
n∑
j=1

∫
· · ·
∫

0≤t1≤···≤tj−1≤u≤tj≤···≤tn

(
j−1∏
i=1

Pλ(ti)Q
′(u)

n∏
i=j

Pλ(ti)

)
dt1 . . . dtj−1 du dtj . . . dtn,

where we set
∑0

j=1 aj = 0; rearranging sums yields

=
∞∑
n=0

∞∑
k=0

e−λtλn+k

∫
· · ·
∫

0≤t1≤···≤tn≤u≤tn+1≤···≤tn+k

(
n∏
i=1

Pλ(ti)Q
′(u)

n+k∏
i=n+1

Pλ(ti)

)
dt1 . . . dtn du dtn+1 . . . dtn+k,

which can be written as

=

∫ t

0

∞∑
n=0

e−λu(λu)n

n!

n!

un

∞∑
k=0

e−λ(t−u)(λ(t− u))k

k!

× k!

(t− u)k

∫
· · ·
∫

0≤t1≤···≤tn≤u≤tn+1≤···≤tn+k

(
n∏
i=1

Pλ(ti)Q
′(u)

n+k∏
i=n+1

Pλ(ti)

)
dt1 . . . dtn+kdu.

Rewriting the above expression in operator form, yields

d

dθ
P (0, t) =

∫ t

0

P (0, u)Q′(u)P (u, t)dt.

12



Letting U be uniformly distributed on [0, t] independent of everything else, we arrive at

d

dθ
P (0, t) = tE

[
P (0, U)Q′(U)P (U, t)

]
,

which concludes the proof. �
Theorem 3 yields the following algorithm.

Algorithm 3 Let p(0) denote the initial distribution.

• Generate U uniformly distributed on [0, t].

• Simulate a Poisson-λ-process up to time U , which yields Nλ time instances 0 < t1 <
t2 < · · · < tNλ < U , and let t0 = 0 and tNλ+1 = U . Construct {Xk : 0 ≤ k ≤ Nλ}
according to Algorithm 1 and set X(U) = XNλ.

• For given state x, let X+
1 (x) be distributed according to P+

λ (x, ·) and X−1 (x) be
distributed according to P−λ (x, ·).

• Simulate a Poisson-λ-process from time U up to time T , which yields N ′λ time
instances U < t1 < t2 < · · · < tN ′λ < T , and let tN ′λ+1 = T .

• For 1 ≤ k ≤ N ′, let the transition probability from X±k (x) to X±k+1(x) be given by
Pλ(τk+1). Construct {X±k (x) : 0 ≤ k ≤ N ′λ} according to Algorithm 1.

Then it holds that

d

dθ
E
[∫ T

0

f(Xt)dt

]
= T E

c(X(U))

N ′λ+1∑
k=1

(
f(X+

k (X(U)))− f(X−k (X(U))
)

(τk − τk−1)

 ,
with c(y) = (1/λ)[CQ(tN)](y, y).

4 Perturbation Analysis for Commutative Inhomo-

geneous Markov Processes

Definition 3. Let Q′θ(t) = Q′θ be independent of t. The family {Qθ(t) : t ≥ 0} is said to
be commutative if

Qθ(t)Q
′
θ = Q′θQθ(t),

for all t ≥ 0.

Lemma 5. If the family {Qθ(t) : t ≥ 0} is commutative, then it holds that

Pλ(t)Q
′
θ = Q′θPλ(t),

for all t ≥ 0.

13



Proof: By (4) it follows

Pλ(t)Q
′
θ =

(
I +

1

λ
Qθ(t)

)
Q′θ = Q′θ +

1

λ
Q′θQθ(t) = Q′θ

(
I +

1

λ
Qθ(t)

)
= Q′θPλ(t),

for any t, where the second equality follows from the fact that {Qθ(t) : t ≥ 0} is commu-
tative. �

Theorem 4. Let {Qθ(t) : t ≥ 0} be commutative such that Q′θ(t) is independent of t.
Under the conditions put forward in Theorem 1 it then holds that

d

dθ
P (0, t) = tQ′θP (0, t) = t P (0, t)Q′θ,

for any t.

Proof We have assumed that Q′θ is independent of t. Hence, Theorem 1 yields

d

dθ
P (0, t) =

∞∑
n=1

e−λtλn−1

n∑
j=1

∫
· · ·
∫

0≤t1≤t2≤...≤tn

(
j−1∏
i=1

Pλ(ti)Q
′
θ

n∏
i=j+1

Pλ(ti)

)
dt1 . . . dtn.

By commutativity of {Qθ(t) : t ≥ 0}, Lemma 5 yields

d

dθ
P (0, t) = Q′θ

∞∑
n=1

e−λtλn−1

n∑
j=1

∫
· · ·
∫

0≤t1≤t2≤...≤tn

n∏
i=1,
i 6=j

Pλ(ti)dt1 . . . dtn,

relabeling the ti’s and noting that integrating the free variable over [0, t] yields t, gives

= tQ′θ

∞∑
n=1

e−λtλn−1

∫
· · ·
∫

0≤t1≤t2≤...≤tn−1

n−1∏
i=1

Pλ(ti)dt1 . . . dtn−1

= tQ′θ

∞∑
n=0

e−λtλn
∫
· · ·
∫

0≤t1≤t2≤...≤tn

n∏
i=1

Pλ(ti)dt1 . . . dtn

= tQ′θ

∞∑
n=0

e−λt(λt)n

n!

n!

tn

∫
· · ·
∫

0≤t1≤t2≤...≤tn

n∏
i=1

Pλ(ti)dt1 . . . dtn

= tQ′θPθ(0, t).

The proof of the second equality follows from the same line of argument and is therefore
omitted.

�
We call

d

dθ
P (0, t) = tQ′θP (0, t)
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the backward sensitivity expression, and

d

dθ
P (0, t) = t P (0, t)Q′θ,

the forward sensitivity expression.
The result put forward in Theorem can be interpreted as follows. Let Xt(x) denote

the Markov processes started at time 0 with initial value X(0) = x. Writing Q′ =

CQ(P+
Q − P

−
Q ) the derivative of E[

∫ T
0
f(Xt)dt] can be obtained from

E
[
c(X(0))

(∫ T

0

f(Xt(X
+))dt−

∫ T

0

f(Xt(X
−))dt

)]
, (8)

whereX+ is distributed according to p(0)P+
Q and whereX− is distributed according to

p(0)P−Q . The normalizing variable c(X(0)) is given by (CQ)yy for y = X(0), the initial
state according to p(0). The derivative expression in (8) is called the backward sensitivity
estimator as it is built on the backward sensitivity expression for dP (0, t)/dθ. In the same
vein, a forward sensitivity estimator can be obtained by pushing the perturbation Q′ to
the end of time interval [0, T ].

Theorem 5. Let {Qθ(t) : t ≥ 0} be commutative such that Q′θ(t) is independent of t.
Then for any t, the forward sensitivity estimator is given by

d

dθ
Ex
[∫ T

0

f(Xt)dt

]
= T

∑
y

Q′(x, y)Ey
[∫ T

0

f(Xt)dt

]
and backward sensitivity estimator is given by

d

dθ
Ex
[∫ T

0

f(Xt)dt

]
= T Ex

[∫ T

0

(Q′f)(Xt)dt

]
.

Proof: We first proof the backward sensitivity estimator. Using Theorem 4, we may
compute as follows

d

dθ
Ex
[∫ T

0

f(Xt)dt

]
=

d

dθ

∫ T

0

(∑
y

f(y)[P (0, t)](x, y)

)
dt

=

∫ T

0

(∑
y

f(y)[Q′P (0, t)](x, y)

)
dt

=

∫ T

0

(∑
y

f(y)
∑
z

Q′(x, z)[P (0, t)](z, y)

)
dt

=
∑
z

Q′(x, z)

∫ T

0

∑
y

f(y)[P (0, t)](z, y) dt,
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which concludes the first part of the proof. As for the forward sensitivity estimator,

d

dθ
Ex
[∫ T

0

f(Xt)dt

]
=

d

dθ

∫ T

0

(∑
y

f(y)[P (0, t)](x, y)

)
dt

=

∫ T

0

(∑
y

f(y)[P (0, t)Q′](x, y)

)
dt

=

∫ T

0

(∑
y

f(y)
∑
z

[P (0, t)](x, z)Q′(z, y)

)
dt

=

∫ T

0

∑
z

(∑
y

Q′(z, y)f(y)

)
P (0, t)(x, z) dt,

which proves the claim �

5 Higher Order Derivatives

Repeating the arguments put forward in the previous section, expressions for higher order
derivatives can be obtained. The general statement is as follows

dn

dθn
P (0, t) =

∑
l1, . . . , lk

l1 + l2 + · · · + lk = n

n!

l1!l2! · · · lk!

∫
[0,T ]k

P (U0, U1)
n∏
i=1

Q(li)(Ui)P (Ui, Ui+1) dU1 · · · dUn,

with Un+1 = T , and Q(k) denoting the kth order derivative of Q. For many models,
the generator is an affine linear mapping in the parameters, and in this case the above
expression for the nth order derivative simplifies to

dn

dθn
P (0, t) =

n!

tn

∫
0≤t1≤···≤tn≤t

P (0, t1)Q′(t1)P (t1, t2)Q′(t2) · · ·Q′(tn)P (tn, t)dt1 · · · dtn.

In the commutative case it holds that

dn

dθn
P (0, t) = λn tn (Q′)nP (0, t) = λn tn P (0, t)(Q′)n,

for any t and any n. In the case that (Q′)n = 0 for sufficiently large n, this already yields
a Taylor series expansion for P (0, t).

6 Applications

In this paper we will discuss three models out of different areas of applied probability.
The models have been chosen to illustrate the application of our approach to different
types of models.
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6.1 DNA Model form Biology

The following two examples are inspired by DNA substitution models in biology/genetics.

Example 1. The K80 Model: Let {Xt : t ≥ 0} on S = {1, 2, 3, 4} be governed by the
following generator

Qθ =


−(θ + 2) θ 1 1

θ −(θ + 2) 1 1
1 1 −(θ + 2) θ
1 1 θ −(θ + 2)

 .
One can easily see that Qθ is weakly differentiable w.r.t. θ, having weak derivative Q′θ
given by

Q′θ =


−1 1 0 0
1 −1 0 0
0 0 −1 1
0 0 1 −1

 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

−


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = Q+
θ − I,

i.e., Q−θ is the identity matrix. Hence the ”negative” version of the process will be the
original process. Moreover, Q+

θ represents a deterministic jump from the current state to
a neighboring one. In addition, one can check that Qθ and Q′θ commute in this case, using
the backward sensitivity estimator yields

d

dθ
E[f(Xt)] = E[f(φ(Xt))− f(Xt)],

where φ(1) = 2, φ(2) = 1, φ(3) = 4, and φ(4) = 3.

Example 2. The JC69 Model: Let {Xt : t ≥ 0} on S = {1, 2, 3, 4} be governed by the
following generator

Aθ =


−3θ θ θ θ
θ −3θ θ θ
θ θ −3θ θ
θ θ θ −3θ

 .
Again, Aθ is weakly differentiable w.r.t. θ, having weak derivative A′θ given by

A′θ =


−3 1 1 1
1 −3 1 1
1 1 −3 1
1 1 1 −3

 = 3


0 1/3 1/3 1/3

1/3 0 1/3 1/3
1/3 1 0 1
1/3 1/3 1/3 0

−


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
Note first that Aθ and A′θ commute in this case. Therefore, the differential formula reduces
to

∂θPθ(t) = tA′θPθ(t) = tPθ(t)A
′
θ.
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For 1 ≤ i ≤ 4, introduce φ(i) uniformly distributed on {1, 2, 3, 4}\{i}. Them, the backward
sensitivity formula leads to

∂

∂θ
E[f(Xt)] = 3E[f(φ(Xt))− f(Xt)].

In this case, one can check directly the validity of the above estimator since the expres-
sion of Pθ(t) can be obtained in closed form. Indeed, in this case we have Pθ(t) = exp(tAθ);
direct calculation yields

Pθ(t) =
1

4


1 + 3e−4tθ 1− e−4tθ 1− e−4tθ 1− e−4tθ

1− e−4tθ 1 + 3e−4tθ 1− e−4tθ 1− e−4tθ

1− e−4tθ 1− e−4tθ 1 + 3e−4tθ 1− e−4tθ

1− e−4tθ 1− e−4tθ 1− e−4tθ 1 + 3e−4tθ

 =
1

4


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

− 1

4
e−4tθA′θ.

We conclude that ∂θPθ(t) = tA′θPθ(t) = te−4tθA′θ, hence

∂θExθ [f(Xt)] = tA′θPθ(t)f(x) = te−4tθ[A′θf ](x) = te−4tθ
∑
y 6=x

[f(y)− f(x)]. (9)

On the other hand, the distribution of φ(x) is given by1 [0, 1/3, 1/3, 1/3]∗ while that of

x is [1, 0.0.0]∗. Since Pθ(t) is known, the distributions of X
φ(x)
t and Xx

t are given by the
vectors

Pθ(t)
∗[0, 1/3, 1/3, 1/3]∗ =

[
1− e−4tθ

4
,
3 + e−4tθ

12
,
3 + e−4tθ

12
,
3 + e−4tθ

12

]∗
,

and

Pθ(t)
∗[1, 0, 0, 0]∗ =

[
1 + 3e−4tθ

4
,
1− e−4tθ

4
,
1− e−4tθ

4
,
1− e−4tθ

4

]∗
,

respectively. To see now that ∂θExθ [f(Xt)] = tExθ [Wf (t, 0)], we calculate the latter, obtain-
ing

tExθ [Wf (t, 0)] = 3t

[
3 + e−4tθ

12
− 1− e−4tθ

4

]∑
y 6=x

f(y) + 3t

[
1− e−4tθ

4
− 1 + 3e−4tθ

4

]
f(x).

After performing straightforward calculations, the expression above is the same as the
r.h.s. in (9).

6.2 The M(t)/M/c+M Queue

Let X ∗ be the ergodic queue-length process with states (x1, x2)t ∈ S = N0×N0, where x1

denotes the number of customers either in service or waiting in the queue and x2 refers
to the impatient customers intending to recall. We regard this model as an open Jackson

1We may re-label the elements of S so that x comes on the first position.
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network with two nodes. External arrivals - modeling first callers - enter the system with
rate λ(t) at the first node where they are served by c servers each providing service at
rate µ. We model the timedependence of the arrival rate through the sinusoidal arrival
rate function

λ(t) = a+ b sin(t), t ≥ 0,

see, for example, [3] for an motivation of this rate function from call-center analysis.
However, callers abandon if their waiting time exceeds their exponentially-α distributed
patience. Customers who hung up are considered to enter a second node - the orbit -
which they leave by recalling after an exponentially-β distributed time. Therefore the
first node is an M(t)/M/c queue with abandonments while the latter one is an M/M/∞
queue. Transition rates for x, y ∈ S are given as follows

Qx,y(t) =



λ(t) y = (x1 + 1, x2), x1, x2 ≥ 0

min{x1, c}µ y = (x1 − 1, x2), x1 ≥ 1, x2 ≥ 0

max{x1 − c, 0}α y = (x1 − 1, x2 + 1), x1 ≥ 1, x2 ≥ 0

x2β y = (x1 + 1, x2 − 1), x1 ≥ 0, x2 ≥ 1

−(λ(t) + min{x1, c}µ+ max{x1 − c, 0}α + x2β) y = (x1, x2), x1, x2 ≥ 0

0 otherwise.

(10)
An overview of the system is provided in Figure 1.

-arriving
customers

λ(t) queue

?

abandon-
ment

α

6

retrial
β

orbit

@
@
@@R

XXXXz
�
�
���

server 1

server 2

server c
...

-µ

-µ

-µ

served
customers

Figure 1: Structure of an M(t)/M/c+M queueing system with abandonment and retrial

Retrial queues have been intensively studied in the literature, see, for example, [5], and
[8] and the references therein, as well as the two survey papers [12] and [4]. Retrial queues
are especially useful for modelling call centers, see, for example, [6], but have also some
further applications of which four are presented in [12]. For a recent overview on retrial
queues we refer to [1]. Even for time-independent arrival rates, i.e., for λ(t) = a, t ≥ 0,
a closed form solution for the stationary distribution of the M/M/c retrial queue is only
available for c = 1, 2, see [5], for larger values of c only approximations are known [1].
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Differentiating Q with respect to θ = b yields

∂

∂b
Qx,y(t) =


sin(t) y = (x1 + 1, x2), x1, x2 ≥ 0

− sin(t) y = (x1, x2), x1, x2 ≥ 0

0 otherwise.

(11)

In words, perturbing b in the arrival rate has only effect if an arrival occurs or the state
remains unchanged. Hence ∂Q/∂µ can be written as the difference between two re-scaled
transition kernels P+ and P−, where P+ leaves forces an arrival, i.e., P+(x1, x2;x1 +
1, x2) = 1 and all other entries are zero, and P− is the identify transition kernel that
leaves the state unchanged. More specifiaclly.

∂

∂b
Q(t) = sin(t)(P+ − P−).

and we obtain

∂

∂b
P (0;T ) =

∫ T

0

sin(t)P (0; t)P+P (0;T ) dt− T (1− cos(t))P (0, T ),

The above representation leads to the following simulation scheme. For 0 ≤ U ≤ t, let
X+(T, U) be defined as follows. The process starts at time zero in x. Until time U the
process evolves according to P (0, U). At time U an instantaneous transition takes place
where one customer is added to the queue (i.e., one additional caller is generated). After
this instantaneous perturbation, the process evolves during the remaining T−U time units
according to P (T − U). Choosing U uniformly distributed on [0, T ] and independent of
everything else, we arrive at

∂

∂µ
E
[
f(X(t))

∣∣X(0) = x
]

= T E
[
f(X(T, U))− (1− cos(t))f(X(T ))

∣∣X(0) = x
]
.

7 A Numerical Study

7.1 Sensitivity Analysis

7.2 Fitting the Model

Compute the gradient of E[f(St)] with respect to a and b. Minimize the distance of
Ea,b[f(St)] estimated by the model the true observed value of the performance, say, d.
Using straightforward stochastic approximation we can now find (a, b) that minimizes
(Ea,b[f(St)]− d)2.

Notes To Ourselves

Here is a list of issues we have to discuss. As a general remark, the notation has to be
unified but up to now I still haven’t found a good notation that satisfies all needs.
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(0) Massey and Whitt only prove the formula for P (0, t). The extension of this result
to E[

∫
f(Xt)dt] seems logical but, to be frank, I wouldn’t know how to prove it.

(1) The fact that weak differentiability implies v-norm Lipschtiz continuity is only es-
tablished for measures and not for Markov chains. I am not sure whether this
actually holds for Pλ. If we cannot prove this, then we still can use the following
result. If condition (C) holds and in addition for aij(t) in condition (C) it holds
that ∣∣∣∣∣

∣∣∣∣∣∑
j

aij(t)

∣∣∣∣∣
∣∣∣∣∣ =

(∑
j

aij(t)

)
vi <∞,

then Pλ is || · ||v-norm Lipschitz continuous.

(2) Should we prove this? In an article in TOMACS we have proved this v-norms where
we assumed that v is of polynomial form.
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