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Polynomial time approximation schemes for the

traveling repairman and other minimum

latency problems.

René Sitters ∗

Abstract

We give a polynomial time, (1 + ǫ)-approximation algorithm for the
traveling repairman problem (TRP) in the Euclidean plane, on weighted
planar graphs, and on weighted trees. This improves on the known quasi-
polynomial time approximation schemes for these problems. The algo-
rithm is based on a simple technique that reduces the TRP to what we call
the segmented TSP. Here, we are given numbers l1, . . . , lK and n1, . . . , nK

and we need to find a path that visits at least nh points within path
distance lh from the starting point for all h ∈ {1, . . . ,K}. A solution is
α-approximate if at least nh points are visited within distance αlh. It is
shown that any algorithm that is α-approximate for every constant K in
some metric space, gives an α(1 + ǫ)-approximation for the TRP in the
same metric space. Subsequently, approximation schemes are given for
this segmented TSP problem in different metric spaces. The segmented
TSP with only one segment (K = 1) is equivalent to the k-TSP for which
a (2 + ǫ)-approximation is known for a general metric space. Hence, this
approach through the segmented TSP gives new impulse for improving
on the 3.59-approximation for TRP in a general metric space. A similar
reduction applies to many other minimum latency problems. To illustrate
the strength of this approach we apply it to the well-studied scheduling
problem of minimizing total weighted completion time under precedence
constraints, 1|prec|

∑
wjCj , and present a polynomial time approximation

scheme for the case of interval order precedence constraints. This improves
on the known 3/2-approximation for this problem. Both approximation
schemes apply as well if release dates are added to the problem.

1 Introduction

The traveling repairman problem (TRP) (also known as the minimum latency
problem) is similar to the well-known traveling salesman problem (TSP). An
instance is given by points in a metric space and a feasible solution is a path
Π, starting at a given origin r, that visits each of the points. The completion
time of a point v is the distance from r to v on path Π and the objective is to
minimize the total completion time of the points. Hence, the problem can be
seen as a traveling repairman who’s aim is to minimize the average arrival time
at the clients. The traveling salesman on the other hand aims at minimizing
the travel time of the salesman himself.
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The approximability of the TRP has been the subject of many papers [2, 4, 5,
12, 13, 14, 15, 17, 18, 19, 23, 26, 28, 29]. The first approximation ratio, given by
Blum et al. [13], was 144 and the current smallest ratio for general metrics is 3.59
due to Chaudhuri et al. [14]. Even for trees, the best polynomial time approx-
imation ratio was 3.59 until recently Archer and Blasiak reduced it to 3.03 [4].
NP-hardness of the tree case was shown in [28]. For the Euclidean plane, a 3.59-
approximation follows from the TRP algorithm by Goemans and Kleinberg [19]
in combination with the polynomial time approximation scheme (PTAS) for the
Euclidean k-TSP by Arora [7]. A quasi-polynomial time approximation scheme
for the TRP on trees, the Euclidean plane and on weighted planar graphs was
given by Arora and Karakostas [10, 12]. Arora and Karakostas write that they
‘do not know whether the running time can be reduced to polynomial’. Here
we show that this is indeed possible.

All known TRP algorithms solve some form of the k-TSP or k-MST as a
subroutine. In the k-TSP (k-MST), one needs to find the shortest tour (tree)
that visits at least k of the n input points. For example, the algorithm by
Goemans and Kleinberg [19] first computes approximate k-TSP tours for all
k 6 n and then combines a subset of these tours into one TRP solution. An
alternative approach is to make subtours of geometrically increasing length and
to visit a maximum number of points in each subtour. The obtained ratio
is 3.59α, where α is the approximation ratio of the k-TSP (or k-MST). So
far, the best ratio for k-TSP and k-MST is 2 + ǫ [11]. Chaudhuri et al. [14]
found a way to bypass this factor 2 in the analysis and noted that breaking the
barrier of 3.59 would probably involve an approach different than combining
small tours. Indeed, the exact algorithm for TRP on the line [2] and the quasi-
PTAS [12] for the plane and trees are different since they find a solution directly
by one dynamic program. Our approach here is to combine both ideas. Instead
of solving n times a k-TSP, we solve a polynomial number of relatively large
subtour problems which we call the segmented TSP. Dynamic programming
is applied to combine a subset of these subtours into one solution. As in [19],
the subtours are of geometrically increasing length. However, the multiplication
factor is not an absolute constant but a large constant depending on ǫ. This way,
we loose only a 1+ǫ factor due to the returns to the origin. The downside is that
the number of subproblems increases as well as their complexity. We show that
it is enough for a PTAS to solve only a polynomial number of these subproblems
approximately. More precesily, it is shown that any α-approximation algorithm
for the segmented TSP gives an α(1 + ǫ)-approximation for the TRP in the
same metric space. Subsequently, we give a PTAS for the segmented TSP on
weighted trees, the Euclidean plane and weighted planar graphs. An intersting
by-product is that this gives a new direction for improving on the general 3.59
approximation since any approximation ratio better than 3.59 for the segmented
TSP gives an improved factor for the TRP! The segmented TSP has not been
studied before and no constant factor approximation is known for general metric
spaces. It seems unlikely though that the factor 3.59 will show up in the analysis
of the segmented TSP.

The same approach can be applied to many sequencing problem with mini-
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mum total (weighted) completion time objective. This is illustrated by our sec-
ond application, which is the notorious scheduling problem of minimizing total
weighted completion time under precedence constraints, known as 1|prec|

∑

wjCj

in the standard scheduling notation. (See e.g. Graham et al. [20].) The ap-
proximability of this problem has been studied in many papers. The problem
is known to be NP-hard [24, 25] and several 2-approximation algorithms are
known. The paper [3] gives a recent overview on the status of this problem. We
present a polynomial time approximation scheme for the case of interval order
precedence constraints. Woeginger [30] gave a 1.62-approximation algorithm
and a 3/2-approximation was given by Ambühl et al [3]. Somewhat surpris-
ingly, the same paper shows that scheduling interval orders is in fact NP-hard.
Hence, our PTAS closes the gap in the approximabilty for this problem.

1.1 Preliminaries

Definition 1 An instance of the traveling repairman problem (TRP) is given
by a set V of n+ 1 points, one of them is the origin r, and symmetric integer
distances dij satisfying the triangle inequality. A solution is a permutation Π =
(v0, v1, . . . , vn) of V , where v0 = r. The completion time C(v) of a point v = vi
is the distance from r to v on the path defined by Π: C(vi) =

∑i
j=1 dvi−1,vi .

The goal is to find a solution with minimum total completion time:
∑

v∈V C(v).

With loss of a (1+ǫ)-factor in the approximation factor, we may assume that
all distances are polynomially bounded. Consequently, the length of the optimal
tour is polynomially bounded. More precisely, (see also [8]) we may assume that
all distances are in {0, 1, . . . , B} with B = O(n2/ǫ). We use the notation Õ(.)

when ǫ is assumed constant. For example, ǫn = Õ(n) and n1/ǫ2 = nÕ(1).
It is convenient for the analysis to see a solution Π as a path that is traversed

with at most unit speed. That means, we assume there is a continues path of
length dvi−1,vi between consecutive points vi−1 and vi in Π. The completion
time C(v) of input point v is then defined as the time at which v is visited for
the first time.

In [12], the authors note that any solution Π can be replaced by a con-
catenation of γ = O(log n/ǫ) TSP-paths with only a (1 + ǫ) factor increase in
value. That means, the solution can be partitioned into γ segments such that
replacing each segment S by a shortest path that visits the same points as S
and has the same start and endpoint as S, increases the value of the solution
by at most a factor (1 + ǫ). The proof follows easily by letting the number of
points visited by the segments decrease geometrically. Here, we prove the same
lemma through the alternative approach of partitioning the timeline in intervals
of geometrically increasing length. We shall not use Lemma 1 directly but will
use a similar argument later when we partition the timeline in only a constant
number of intervals.

Lemma 1 With loss of a factor 1 + ǫ in the approximation, we may assume

that Opt is a concatenation of O
(

logn
ǫ

)

TSP-paths.([12])
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Proof Consider time-points 1, (1 + ǫ), (1 + ǫ)2, . . . , (1 + ǫ)γ , where (1 + ǫ)γ =
O(n3/ǫ) is an upper bound on the length of the optimal tour. Then, γ =
O((log n)/ǫ). Now, replace the path between any two consecutive time-points
by a TSP-path. The completion time of any point is increased by at most a
factor 1 + ǫ. �

By Lemma 1, it is enough to restrict to solutions composed of γ = O ((logn)/ǫ)
TSP-paths. In [12], a solution composed of at most γ TSP-paths is found by one
dynamic program. Consequently, the logn shows up naturally in the exponent
of the running time. A simple example on the line shows that Ω(logn) paths
are needed for a PTAS: Let n = 2k − 1 and place 2k−i points at x = (−2)i,
for i = 1, . . . , k. For this example, there is no constant approximate solution
that is a concatenation of o(logn) TSP-paths. Hence, if we stick with the TSP-
paths approach then the only way to improve on the running time is to have a
better understanding of the dependency between the paths. The key inside in
our approach is that the TSP-paths can be clustered in groups of K consecu-
tive TSP-paths each, where K is a constant which depends on ǫ only, and such
that there is only very limited dependency between the groups. That means the
problem on O(log n) TSP paths basically reduces to a problem on K TSP paths.
Consequently, known TSP algorithms can be modified for these subproblems on
K TSP-paths. The dependency is limited in the sense that it is enough to solve
only a polynomial number of these subproblems. Then, dynamic programming
is used to combine solutions for subproblems into one tour.

1.2 Segmented TSP

What we shall denote as the segmented TSP is a generalization of the known
k-TSP in which one needs to find, for a given TSP-instance and number k 6 n,
a tour of minimal length that visits at least k points. A (2 + ǫ)-approximation
was given by Arora and Karakostas [11]. The problem can be solved exactly on
a tree metric and a PTAS is known for Euclidean spaces of fixed dimension [7].
For our PTAS, we need a more general problem that we denote by segmented
TSP. It corresponds with the k-TSP problem for K = 1.

Definition 2 An instance of segmented TSP is given by a set V of n+1 points,
one of them is the origin, and symmetric integer distances dij satisfying the
triangle inequality. Also given are numbers l1 6 l2 6 · · · 6 lK and numbers
n1 6 n2 6 · · · 6 nK . A solution is a tour that starts and ends in the origin
such that at least nh vertices are visited within the first lh distance for all h ∈
{1, . . . ,K} and such that the length of the tour is at most lK . We say that an
algorithm solves the problem if it always finds a solution if one exists. We say
that an algorithm is an α-approximation (α > 1) if for any feasible instance it
finds a tour that visits at least nh vertices within path-distance αlh for all h and
such that its length is at most αlK .

NB. One may also consider the segmented TSP without the restriction that
the solution must end in the origin. This restriction is convenient for our pur-
pose.
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Theorem 1 If, for any metric space, there is a polynomial time α-approximation
algorithm for the segmented TSP for every constant number of segments, then
there is a polynomial time α(1 + ǫ)-approximation algorithm for the Traveling
Repairman Problem in the same metric space for every constant ǫ.

In Section 3, we show that the segmented TSP with a constant number of
segments can be solved exactly for weighted trees. Further, we show that there
is a PTAS for the Euclidean plane and for weighted planar graphs.

Corollary 1 There exists a PTAS for the (unweighted) Traveling Repairman
Problem in the Euclidean plane, for edge-weighted trees, and for edge-weighted
planar graphs.

The following useful definition and lemma apply to the segmented TSP in
general and are used in Section 2.

Definition 3 Let I be a segmented TSP instance. The j-th completion time of
I is denoted by CI

j and is defined as follows. The first n1 completion times are
l1, the next n2 − n1 completion times are l2, and so on.

Note that CI
j is an upper bound on the j-th completion time in any feasible

solution for I. The following lemma is immediate.

Lemma 2 Let T be a α-approximate solution for segmented TSP instance I
and denote the j-th completion time in T by CT

j . Then, CT
j 6 αCI

j for any j.

2 Reducing TRP to segmented TSP

The reduction is done by the following steps. First, it is shown that we may
restrict to solutions that return in the origin at time points ti, where ti/ti−1 =
(1 + ǫ)K for some large K depending on ǫ only. For this, we use a simple
probabilistic argument. The part of the tour between time points ti and ti+1 is
called the i-th. subtour. Each of these Γ = Õ(logn) subtours can be partitioned
into K subpaths where the ratio of end time and start time of each path is 1+ǫ.
We call these subpaths segments. In the optimization, we may approximate the
completion time of a point by the endpoint of the segment that it is on. If
we would know for each subtour the points to be visited, then an approximate
solution can easily be computed given a segmented TSP algorithm. Clearly,
we cannot afford to guess these subsets. However, as we show in this section,
for large enough K, we can afford to revisit in subtour i, all points that were
visited in the preceding subtours. Consequently, in the dynamic programming
there is no need to keep track of subsets of points and we only need to enumerate
over the number of points visited. This requires only a polynomial number of
segmented TSP instances to solve. Remarkably, the number Γ of subtours is
not dominating the running time, which is only polynomial in Γ.
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2.1 Restricting the solution space

Assume 0 < ǫ 6 1 and let K be an integer depending on ǫ only. To simplify
notation, we write δ = 1+ ǫ. Choose h0 uniformly at random in {0, 1, . . . ,K−1}
and let

Ai = δ(i−1)K+h0 , for i > 0. (1)

Consider an optimal solution, Opt, and let L be its length, i.e., the largest
completion time. (In general, we denote by Opt the solution itself as well as
its value.) For i > 1, let Opti be the solution restricted to the first length Ai.
(Note in particular that Opt1 has length δh0 .) Let Γ be the smallest integer
such that AΓ > L. Hence, we may assume1 Γ = Õ(log n). The modified solution
Opt

′ is defined as follows:

Opt
′: For i = 1 to Γ, start Opti at time ti := 3Ai−1 and return to the origin.

(The constant 3 above may be replaced by any constant strictly larger than
2 for the proof to work.) Let v be an arbitrary point of the instance and let
C(v) and C′(v) be its completion time in, respectively, Opt and Opt

′, where
the completion time is the first moment that the point is visited. Let E[Opt

′]
be the expected value of Opt

′ over the random choice of h0.

Lemma 3 For large enough K = O(1/ǫ2), it holds that E[C′(v)] 6 (1 + ǫ)C(v)
for any input point v. Hence, E[Opt

′] 6 (1 + ǫ)Opt.

Proof Feasibility holds if it is possible to return to the origin after each Opti

before beginning the next path Opti+1 at time ti+1. This is clearly true if
ti + 2Ai 6 ti+1 for all i. Since ti = 3Ai−1, this is equivalent with

3Ai−1 + 2Ai 6 3Ai ⇔ Ai/Ai−1 > 3 ⇔ δK > 3.

Hence, for feasibility it is enough to take K = O(1/ log δ) = O(1/ǫ). Now, let
us compute the expected value of Opt

′. Consider an arbitrary point v of the
instance and let i′ be the smallest index such that Ai′ > C(v), that means, point
v is visited in Opt

′ for the first time by path Opti′ . Let δ
q−1 < C(v) 6 δq, for

some integer q > 0. (Note that q > 0 since the minimum distance and hence
the minimum completion time is at least 1.) Then the expected value of Ai′ is

E[Ai′ ] =
1

K

K−1
∑

h=0

δq+h =
δq+K − δq

K(δ − 1)
<

δq+K

K(δ − 1)
.

Remember that ti′ = 3Ai′−1 = 3δ−KAi′ and note that ti′ = C′(v) − C(v).
Hence,

E[C(v′)]− C(v) = E[ti′ ] =
3

δK
E[Ai′ ] <

3

δK
δq+K

(δ − 1)K

=
3δq

(δ − 1)K
<

3δ

(δ − 1)K
C(v).

1More precisely, we have AΓ > L = O(n3/ǫ), where AΓ ≥ (1 + ǫ)(Γ−1)K . Hence, ΓK =
O(log1+ǫ(n

3/ǫ)) ⇒ Γ = O(logn/(ǫK) = O(ǫ logn) if we take K = Θ(1/ǫ2).
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It follows that E[C′(v)] 6 (1 + ǫ)C(v), for any point v if 3δ
(δ−1)K 6 ǫ, i.e., if

K >
3δ

ǫ(δ − 1)
=

3(1 + ǫ)

ǫ2
= O

(

1

ǫ2

)

.

�

Since E[Opt
′] 6 (1+ǫ)Opt there must be some h0 for which the correspond-

ing deterministic solution Opt
′ satisfies Opt

′
6 (1 + ǫ)Opt. From now on we

consider Opt
′ to be this deterministic solution. For j = 1, . . . , n, let Dj be the

j-th completion time of Opt
′ (where we only consider the first appearance of

each point). Equivalently, we can define Dj as the completion time of the j-th
point on the first subtour that visits at least j points. The properties of solution
Opt

′ are listed in the next lemma.

Lemma 4 Solution Opt
′ has the properties:

(i) It is in the origin at time ti = 3δ(i−2)K+h0 for all i = 1, 2, . . . ,Γ, where
K = O

(

1
ǫ2

)

, Γ = O(ǫ log n) and h0 is some fixed number in {0, 1, . . . ,K−
1}. We call the tour between ti and ti+1 the i-th subtour.

(ii) The number of points on the i th. subtour is non-decreasing in i.

(iii) For j = 1, . . . , n, let Dj be the completion time of the j-th point on the
first subtour that visits at least j points. Then

∑n
j=1 Dj 6 (1 + ǫ)Opt.

Now consider any tour that satisfies properties (i) and (ii) and let Dj be
defined as in (iii). Then, clearly the j-th completion time is no more than
Dj. Hence, the lemma shows that we may restrict to solutions which have
properties (i) and (ii) and among those tours minimize

∑n
j=1 Dj as defined in

(iii). We shall prove that minimizing
∑n

j=1 Dj can be done easily by dynamic
programming if we have an algorithm for the following subproblem.

2.2 The subproblem

Definition 4 An instance of the subproblem is given by i ∈ {1, . . . ,Γ} and
numbers m′ 6 m′′ ∈ {0, 1, . . . , n}. A solution is a tour that starts at the origin
at time ti and returns before time ti+1 and visits exactly m′′ points. The value
of a solution is the sum of completion times of points m′+1, . . . ,m′′ on this tour
(which is zero if m′ = m′′). The objective is to find a solution with minimum
value. Note that an instance i,m′,m′′ may not have a feasible solution. For any
feasible instance, let Subi(m

′,m′′) be its optimal value.

Let mi be the number of points visited by the partial solution Opti. Then
clearly,

Opt
′
>

Γ
∑

i=1

Subi(mi−1,mi).
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Definition 5 An (α, β) approximation algorithm for the subproblem is an al-
gorithm that finds for any feasible instance (i,m′,m′′) a tour that starts in the
origin at time αti and ends in the origin before time αti+1, visits exactly m′′

points, and for which the total completion time of the points m′ + 1, . . . ,m′′ is
at most αβSubi(m

′,m′′).

Assume we have an (α, β)-approximation algorithmAlg for the subproblem.
LetAlgi(m

′,m′′) be the value returned by the algorithm for instance (i,m′,m′′)
and let it be infinite if no solution was found. For any sequence of integers
0 ≤ m̂1 6 · · · ≤ m̂Γ = n we get a tour of total completion time

Γ
∑

i=1

Algi(m̂i−1, m̂i) 6 αβ
Γ
∑

i=1

Subi(m̂i−1, m̂i) (2)

by concatenating the tours Algi(m̂i−1, m̂i). Minimizing the left side of (2)
over all values 0 ≤ m̂1 6 · · · ≤ m̂Γ = n is easy since they form a non-decreasing
sequence. To be precise, let Alg1(m

′′) = Alg1(0,m
′′) for all m′′ 6 n and for

k = 2, . . . ,Γ, let

Algk(m
′′) = min

m′6m′′

Algk−1(m
′) +Algk(m

′,m′′).

Then, the minimum is given by AlgΓ(n). Let the values m̂i minimize the left
side of (2) and let mi be the number of points visited by the partial solution
Opti. Then, we find a solution of total completion time at most

αβ

Γ
∑

i=1

Subi(m̂i−1, m̂i) ≤ αβ

Γ
∑

i=1

Subi(mi−1,mi)

6 αβOpt
′ ≤ αβ(1 + ǫ)Opt.

The number of subproblems is O(Γn2) and given all approximate values, the
dynamic programming takes O(Γn2) time. Further, the number of choices for h0

is K (See Equation 1). Hence, it takes only O(KΓn2) = Õ(n2 logn) calls to the
approximation algorithm for the subproblem to get an αβ(1+ ǫ)-approximation
for the Traveling Repairman Problem.

Approximating the subproblem. We show how to obtain an (α, 1 + ǫ)-
approximation for the subproblem if we have an α-approximation algorithm for
the segmented TSP. Let (i,m′,m′′) be a feasible instance of the subproblem.
For h = 0 . . .K, define time-point

t
(h)
i = (1 + ǫ)hti, (Hence, t

(K)
i = t

(0)
i+1 = ti+1.) (3)

Recall the definition of the segmented TSP problem. A polynomial number of

segmented TSP instances is solved (approximately). Let lh = t
(h)
i − ti, h =

8



1, . . . ,K and hence, these are fixed given the index i. The numbers nh take
all possible integer values for which n1 6 n2 6 · · · 6 nK = m′′. This gives
O(nK) instances. Solve all these instances by some α-approximate segmented
TSP algorithm and determine the solution with smallest total completion time
of the points m′ + 1, . . . ,m′′. Let T be this solution and let T ′ be the solution
T started at time αti. We show that T ′ is an (α, 1 + ǫ)-approximation for the
subproblem (i,m′,m′′).

The length of T is at most α(ti+1 − ti). Hence, T ′ completes before time
αti+1. Also, it visits exactly m′′ points. Now let Algi(mi−1,mi) be the value of
T ′ for subproblem (i,m′,m′′). Consider an optimal solution Π for subproblem
(i,m′,m′′) and let I be the segmented TSP instance given by the numbers nh,

where nh is the number of points visited by Π until time t
(h)
i . Let CΠ

j be the j-th

completion time in Π and let CI
j be the j-th completion time of IΠ as defined

in Definition 3. Then,
(1 + ǫ)CΠ

j > (ti + CI
j ).

Instance I is among the enumerated instance. Hence, using Lemma 2,

Algi(mi−1,mi) 6 (m′′ −m′)αti + α
m′′

∑

j=m′+1

CI
j

= α

m′′

∑

j=m′+1

(ti + CI
j )

6 α

m′′

∑

j=m′+1

(1 + ǫ)CΠ
j

= (1 + ǫ)αSubi(mi−1,mi).

Running time. For each subproblem, O(nK) segmented TSP instances are
solved and we simply store the best one. There are Õ(n2 log n) instances for
the subproblem and the dynamic program runs in Õ(n2 logn) time. Hence, the

total running time is nO(K) = nO(1/ǫ2) multiplied by the running time of the
α-approximation algorithm for the segmented TSP.

3 Approximating the segmented TSP

By Theorem 1, any α-approximation algorithm for segmented TSP implies a
(1 + ǫ)α-approximation algorithm for the Traveling Repairman Problem in the
same metric space. Here, we consider the approximability of segmented TSP
in different metric spaces. Remember the definition of an α-approximation
algorithm for the segmented TSP problem: It finds a solution such that ni points
are visited before time αli, where ni and li are given. (For ease of notation we
use an index i instead of h as used in the previous section.) When, we assume
that the number of segments K is constant, then we may guess the number of
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points visited on each of the segments. More precisely, we denote by segment
i, the path that runs between distance li−1 (excluded) and li (included). We

guess the numbers µi of points visited on segment i, where ni =
∑i

j=1 µj for all

i. The number of choices is only O(nK), which is polynomial if K is a constant.
Further, we assume that all li are integer and denote λi = li− li−1. Hence, from
now, we assume that the segmented TSP instance is given by numbers λi and
µi (i = 1, . . . ,K) and we need to visit exactly µi points on the i-th segment.

N.B. By ‘guessing’ we mean enumerating over all possible values and we say
that we are able to guess a certain value if the number of possible values is
polynomialy bounded.

3.1 Edge-weighted tree

The metric space is given by a tree T with non-negative integer weights on the
edges. The distance between any two points u, v is the length of the unique
path between u and v on T . The TSP is trivial on trees since a tour is optimal
if and only if it is a depth-first search on T . Also, the k-TSP can easily be
solved by dynamic programming: For each vertex v and number j 6 k, store
the length l(v, i) of the shortest tour in the subtree rooted at v which visits
exactly j vertices. The value is easily computed from the table of values of the
children of v.

The generalization to segmented TSP is straightforward. First, turn the tree
into a rooted binary tree such that only leaves need to be visited. This can be
done with only a constant factor increase in the number of points by adding
edges of length zero. For each node v unequal to the root we define a vector
of crossing information as follows. The edge above v is traversed at most 2K
times. This gives at most K subtours in the tree rooted at v which start and
end at v. For each of these we guess the start time and end time and we guess
the number of points that each of the K segments have on this subtour. For
all possible vectors we only store if this is feasible or not. A vector is feasible
if it can be obtained from feasible vectors of its two children. For any leaf, a
vector is feasible if there is exactly one subtour and the start time equals its end
time and it contains exactly one vertex (namely v). Note that the time of visit
determines the segment that v is on. For the root we only consider the case of
one subtour starting at time 0 and ending at time lK =

∑K
i=1 µi and for which

segment i contains exactly µi points. The running time is nO(K).

3.2 Euclidean plane

We show that for any feasible segmented TSP instance we can find a (1 + ǫ)-
approximate solution in time nO(K). That means, the solution is a concatenation
of K paths, where the i-th path has length at most (1 + ǫ)λi and visits exactly
µi points. It is important to note that the ǫ used in this section has nothing
to do with the ǫ of Section 2. That means, in this section, K is an arbitrary
integer constant.
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Arora and Karakostas [12] give a quasi polynomial time approximation
scheme for the Traveling Repairman Problem in the Euclidean plane. (See
also [8].) The algorithm in [12] is based on the refined TSP-PTAS [7], which
is more efficient than the simpler version that was published earlier [6]. In the
latter paper, it was shown that here is a (1 + ǫ)-approximate TSP tour that
crosses the boundary of each square in the quadtree only O(log n/ǫ) times. In
the refined PTAS, it was proven that O(1/ǫ) crossings satisfy too. In com-
bination with Lemma 1 this led the authors of [12] to a TRP algorithm with

nO(logn/ǫ2) running time. The proof contains many details but intuitively it does
follow easily from the next three observations: (i) all lengths are polynomially
bounded, (ii) the solution is composed of O(log n/ǫ) TSP-paths, and (iii) there
are only O(1/ǫ) crossings per square per TSP-path. Hence, for a given square
we can afford to guess for each crossing basically all information that we want
and still end up with quasi-polynomial running time. In the segmented TSP
problem, the solution is composed of only K TSP paths. Hence, for constant
K we should expect a better running time. A minor issue is that we have a
restriction on the length of each of the K segments. This is easily solved by
using Markov’s inequality, as we show below in the discussion of the structure
theorem. Another issue is that we cannot copy the approach for the Euclidean
case to the planar graph case, as was done in [12]. For planar graphs, the role of
square boundaries is played by the Jordan curves, and the structural theorem
in this case states that there is a (1 + ǫ)-approximate TSP-tour that crosses
the curve O(log n/ǫ2) times, and not O(1/ǫ) times, as for the Euclidean case.
This leads to a quasi-polynomial running time for the planar segmented TSP.
However, we will show a PTAS for Euclidean segmented TSP which applies
even if we adopt the simpler TSP PTAS [6] that allows O(log n/ǫ) crossings of
the dissection squares. Then, the same approach implies a PTAS for weighted
planar graphs.

The TSP-PTAS [6, 7, 8] contains numerous details. Here we only address
those that are of interest for our modification and refer to the survey [8] for
omitted details.

Structure theorem The rounding of the instance and the construction of the
quadtree and portals remains basically the same: Take the smallest bounding
box and define a grid of polynomial dimension. Move input points to the middle
of grid cells. Then, place an enclosing box of double side length at random on
top of it. Next, make the dissection tree. The depth is Õ(logn). We let the
number of portals for each dissection square be O(log n/ǫ). By scaling distances,
we may assume that for each grid cell and segment i, the part of the segment
that lies inside the cell has integer length.

For the Euclidean TSP problem it is known [8] that there is a tour Π that
crosses the boundary of each dissection square only in portals, and at most twice
in each portal, and for which the expected length is at most (1+ǫ) times optimal.
The same is true for the Traveling Salesman Path problem [8]. The expectation
is over the random shift of the enclosing box. More precisely, for any path of
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length S in the bounding box, the expected length of the detour that is needed
to make it portal respecting is ǫS. Now consider a feasible segmented TSP
instance given by numbers λi and µi. It follows directly that there is solution
T that crosses only at portals and each portal at most 2K times such that each
segment i visits µi points and has length Li > λi and such that E[Li−λi] 6 ǫλi.
Again, the expectation is over the random shift of the box. Note that this is
not enough for our purpose since we want each of the K differences to be at
most ǫλi simultaneously. Since K is constant, this is easily solved by Markov’s
inequality: Pr[Li − λi > 2Kǫλi] 6 1/(2K) for each i. Then, by the union
bound, Pr[Li − λi > 2Kǫλi for at least one i] 6 1/2. Hence, in stead of an
expected (1+ ǫ)-approximate solution we get a (1 + 2Kǫ)-approximate solution
with probability at least 1/2. The additional factor 2K is no issue since K is a
constant. (Again, remember that K is an absolute constant independent of ǫ in
this section.)

Dynamic Programming Note that in the dynamic programming we do not
solve an optimization problem but only search for a feasible solution. An in-
stance I of a subproblem in the DP is given by:

(1) A dissection square S.

(2) For each segment i, the number of points and the length of segment i
inside S.

(3) For each portal of S and all segments i, the number of times segment i
crosses it (0,1,or 2) and in which direction (in or out).

(4) For each segment i, the first and last crossing with S are specified.

(5) A pairing of the crossings with S.

Note that we only guess the length and number of points for each segment
and not for each crossing as was done in [12]. Hence, we can afford Õ(logn)
crossings. Clearly, the number of choices for items (1)–(4) is nO(K/ǫ). The
pairing of the crossings can be done almost independently for each segment
since we know for each crossing the segment it belongs to and we know the first
and last crossing of each segment. Hence, the number of pairings is bounded by
2O(logn/ǫ)K = nO(K/ǫ).

First, consider the base case. By the rounding step, all points coincide and
are in the middle of the cell. Clearly, it would be optimal to serve all these by
the same segment. However, we assumed the number of points on each segment
i to be given by µi. Hence, we should allow the midpoint to be visited by
multiple segments. Clearly, each segment needs to cross the midpoint at most
once. Feasibility can be checked in O(Km) time, where m = O(log n/ǫ) is the
number of portals per square. For the smallest dissection square containing the
root vertex we have the additional restriction that segment 1 starts in the root
and segment K ends in the root.
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Consider an arbitrary (non-base) instance I given by (1)–(5). We check if
there is a feasible instance for each of its children which together are consistent
with instance I. That means, the number of points and lengths should add up
to the right value and all crossing and pairings should be consistent. Further,
one needs to exclude combinations that form subtours. For each instance I
there are nO(K/ǫ) combinations of instances for its four children to check. The
time for checking a single combination is only linear in the number of portals.
For the largest square (the enclosing box) we only need to verify one instance:
the (1 + ǫ)-approximation, i.e., there are no crossings and segment i has length
(1 + ǫ)λi and contains exactly µi points.

3.3 Planar graph

A PTAS for the TSP on weighted planar graphs was given by Arora et al. [9].
The separator in this case is a Jordan curves that divides the graph into an
exterior and interior part. The number of portals is m = O(log n/ǫ2) and each
portal is crossed at most twice. In [12] the authors note that their QPTAS for
Euclidean TRP carries over directly to weighted planar graphs. The running
time for the QPTAS is nO(log2 n/ǫ3) since there are log n/ǫ2 crossing for each of
the logn/ǫ segments and the DP in [12] makes expensive guesses (about length
and number of points) for each crossing. Theorem 1 reduces the number of
segments to a constant. Moreover, the DP used in Section 3.2 only needs to
make expensive guesses for each segment and not for each crossing. Hence, we
conclude that a PTAS similar to the Euclidean PTAS works for planar graphs
too. The total running time for planar graphs is nO(K/ǫ2).

4 Generalizations and variants

The approximation schemes for TRP in R
2, weighted trees and planar graphs

apply as well if release dates are added. The transformation from Opt to Opt
′

works still fine in that case since the solution is only moved forward in time.
Hence, Opt

′ is feasible and the total completion time is increased by at most a
factor 1+ ǫ. In the reduction to segmented TSP, we need to consider segmented
TSP instances with release dates. By rounding release times (by at most a factor
1 + ǫ) we may assume that points are released only at the start times of the K
segments. Equivalently, we may assume that we have sets S1 ⊆ S2 ⊆ · · · ⊆ SK

of points such that the j-th segment can only visit points from Sj . In the
dynamic programs, except for the base case, we do not consider which points
are visited but only store the number for each of the segments. The base case
can still be efficiently solved since the number of segments is constant.

The PTAS applies as well if our objective function is a linear combination
of total completion time,

∑

j Cj , and the length of the path. That means, the
problem is to find a path, starting in the origin, that minimizes α

∑

j Cj +

βmaxj Cj for some α, β > 0. To see this, define the path Opt
′ in exactly the

same way. For any input point p we have E[C′(p)] 6 (1 + ǫ)C(p). In particular,
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this applies to the last point on the path. Hence, E[maxj C
′
j ] 6 (1+ ǫ)maxj Cj ,

where Cj (Cj′ ) is the j-th completion time in Opt (Opt
′). In total we get that

E[α
∑

j

C′
j + βmax

j
C′

j ] 6 (1 + ǫ)(α
∑

j

Cj + βmax
j

Cj).

In the algorithm we guess h0 for which the inequality above holds without
expectation. Also, we guess the corresponding length L′ of the tour Opt

′.
Then we apply the same DP but we restrict to tours of length at most (1+ ǫ)L′.

In the Randomized Search Ratio problem one has to find a (random) path
starting from the root r and visiting all points and the goal is to minimize
maxv E[C(v)]/d(r, v), where d(r, v) is the distance from r to v . In [12], the
authors mention that E. Tardos observed the following: If the minimum latency
problem has a PTAS for a certain class of metrics, then the randomized search
ratio problem has an approximation scheme for that same class of metrics.
Thus, our PTAS implies a PTAS for the randomized search ratio for trees,
planar graphs and the Euclidean plane.

The PTAS also applies to the The k-repairman problem in which one needs
to find k repairman paths that together visit all points. The transition from
Opt to Opt

′ is the same: All repairman are in the origin at the same time.
In the segmented TSP we need to find k segmented TSP-paths simultaneously.
For constant k, there is only a polynomial increase in the running time.

Open problems The generalization to weighted completion times is straight-
forward if weights are polynomially bounded. However, for general weights it is
not clear how to adjust the approximation scheme.

Another interesting problem that is closely related is that of finding a metric
embedding on a line such that the average distortion is minimized [16]. One
can show that the k-TRP with k = 2 is a special case of this metric embedding
problem. The authors of [16] use ideas of the QPTAS for the traveling repairman
problem to obtain a QPTAS for the average distortion problem. It is not clear
whether our ideas can be used to obtain a PTAS for metric line-embedding as
well.

5 Single machine scheduling under precedence

constraints

The reduction used for the TRP applies to almost any problem of minimizing the
total (weighted) completion, assuming that weights are polynomially bounded.
Of course, this doesn’t mean that it is always useful since the subproblem may
be harder to approximate than the original. First, we give a rough sketch
how to apply it to the simple scheduling problem 1|rj |

∑

Cj and then give a
detailed proof for the more challenging problem of scheduling under precedence
constraints. A PTAS for the first was given by Afrati et al [1].
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Example:1|rj |
∑

Cj . We have a single machine and n jobs with processing
times pj and release times rj for j = 1, . . . , n. The objective is to find a schedule
that minimizes the total completion time

∑

j Cj , where Cj is the completion

time of job j. Now, the subproblem is defined on an interval from ti to (1+ǫ)Kti
for some i, and where K depends on ǫ only. For given n′ 6 n′′, the problem is to

find a feasible schedule on a subset of the jobs that minimizes
∑n′′

j=n′+1 Cj . Now
partition the interval in K subintervals as before where the ratio of start and
end time of a subinterval is 1 + ǫ. Hence, we may assume that jobs are released
only at the beginning of subintervals. Say that a job is large if its processing
time is more than ǫ times the length of the smallest subinterval (which is the
first). Then, the number of large jobs in the optimal solution to the subproblem
is bounded by a constant and we guess all of them. The small jobs can be added
greedily such that each subinterval is overpacked by at most ǫ times its length.
�

One of the most intriguing scheduling problems is that of minimizing total
weighted completion times on a single machine under precedence constraints.
(1|prec|

∑

j wjCj , in the notation by Graham et al [20].) The problem is known
to be NP-hard [24, 25] and several 2-approximation algorithms are known. The
paper by Ambühl et al. [3] gives a recent overview on the status of this problem.
Exact polynomial time algorithms are known for some special cases, e.g., for
series parallel possets [24]. Surprisingly, interval ordered precedence constraints
are not one of these. Woeginger [30] gave a 1.62-approximation algorithm and a
3/2-approximation was given by Ambühl et al [3]. The same paper shows that
scheduling interval orders is in fact NP-hard. Here, we give a polynomial time
approximation scheme for interval ordered precedence constraints.

An instance of the scheduling problem is given by n jobs to be processed on
a single machine that can process at most one job at a time. Each job j has a
nonnegative integer processing time pj and weight wj . A partial order on the
jobs defines the precedence constraints between jobs. That means, if j1 ≺ j2,
then job j1 must be completed before j2 can start. The goal is to find a non-
preemptive schedule that minimizes

∑n
j=1 wjCj , where Cj is the completion

time of job j.

Definition 6 A partial order on a set J is an interval order if there is a function
that assigns to each j ∈ J a closed interval [lj , rj ] such that j1 ≺ j2 if and only
if rj1 < lj2 . It is easy to see that for any interval order there is a corresponding
set of intervals for which all 2|J | endpoints are different.

A theorem by Woeginger [30] states that for general precedence constraints,
we may restrict our approximation analysis to the case 1 6 pj 6 n2 and 1 6

wj 6 n2, where n is the number of jobs. In fact, this theorem can be applied
to the special case of interval orders since its proof only reverses the precedence
constraints, and since the reverse of an interval order is again an interval order
(see [30]).
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5.1 Reducing the problem

The reduction is almost the same as what we did for the TRP problem. Let
K = O(1/ǫ2) and choose h0 uniformly at random from {0, 1, . . . ,K − 1}. The
numbers Ai are as before. Consider an optimal solution, Opt, and let Opti

be the solution restricted to the jobs that complete not later than Ai, for i =
1, 2, . . . . The schedule Opt

′ is defined by simply concatenating all the solutions
Opti. Note that jobs appear multiple times since any job that appears in Opti

appears as well in Opti′ for all i′ > i. In general, we allow jobs to appear
more than once and call these pseudo schedules. The completion times and
precedence constraints apply only to the first appearance of each job.

As before, denote by ti the time at which Opti starts in Opt
′. The solution

Opt
′ is well-defined if ti > ti−1 + Ai−1 for all i. Let ti = cAi−1, then cAi−1 >

cAi−2 + Ai−1 holds if c/(c − 1) > Ai−1/Ai−2. For any constant c > 1 we can
choose K such that c/(c−1) > Ai−1/Ai−2 = δK . For simplicity, let us just take
ti = 3Ai−1 as before. This creates unnecessary idle time but at least we can
blindly copy the analysis of the TRP. Let Cj (C′

j) be completion time of job j

in Opt (Opt
′). Then, following the proof of Lemma 3, we have for any job j

that
E[C′

j ] 6 (1 + ǫ)Cj ,

where the expectation is over the random choice of h0. Taking the weighted
sum we have

E[Opt
′] = E[

∑

j

wjC
′
j ] 6 (1 + ǫ)

∑

j

wjCj = (1 + ǫ)Opt.

From now assume that h0 is chosen such that the inequality holds without
expectation: Opt

′
6 (1 + ǫ)Opt.

We call the schedule between two consecutive time points ti a subschedule.
Note that in Opt

′, each subschedule is a feasible schedule on its own. The total
weight of jobs in the i-th subschedule is the weight completed by Opti and
hence, is non-decreasing in i. Let W =

∑

j wj . Then, W 6 n3, since wj 6 n2

for all j. For any w ∈ {1, 2, . . . ,W}, let Dw be the first moment at which
Opt

′ completes a total weight of at least w (where for any job we only count
the weight of its first appearance and the weight is only counted when the job
completes.) Equivalently, we may define Dw as the first moment at which some
subschedule completes a total weight of at least w. Then,

Opt
′ =

∑

j

wjC
′
j =

W
∑

w=1

Dw. (4)

The properties of the pseudo schedule Opt
′ are listed in the next lemma.

Lemma 5 Solution Opt
′ has the following properties:

(i) No job is processed at time ti and the subschedule between time points ti
and ti+1 is a feasible schedule on itself. Here, ti = 3(1 + ǫ)(i−2)K+h0 for
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all i = 1, 2, . . . ,Γ, where K = O
(

1
ǫ2

)

, Γ = O(ǫ logn) and h0 is some fixed
number in {0, 1, . . . ,K − 1}.

(ii) The total weight of jobs scheduled in the i-th subschedule is non-decreasing
in i.

(iii) For any w ∈ {1, 2, . . . ,W}, define Dw as the first moment at which some

subschedule completes a total weight of at least w. Then,
W
∑

w=1
Dw 6 (1 +

ǫ)Opt.

Now consider any pseudo schedule that satisfies (i) and (ii) and let Dw be as
defined in (iii) and let Cw be the moment that the schedule completes a total
weight of at least w. Then (using 4)

∑

j

wjCj =

W
∑

w=1

Cw 6

W
∑

w=1

Dw.

(Equality holds for Opt
′.) Hence, we may restrict to pseudo schedules which

have properties (i) and (ii) and among those, minimize
W
∑

w=1
Dw as defined in

(iii). This can be done approximately by dynamic programming as before if we
have an approximation algorithm for the following subproblem on subschedules.

Subproblem An instance of a subproblem is given by i ∈ {1, . . . ,Γ} and
numbers w′ 6 w′′ ∈ {0, 1, . . . , n3}. A solution is a schedule that starts at time
ti and completes before time ti+1 and completes a total weight of at least w′′.
let Cw be the moment that the schedule completes a total weight of at least w.

The objective is to minimize
∑w′′

w=w′+1 C
w. Note that an instance (i, w′, w′′)

may not be feasible. For any feasible instance, let Subi(w
′, w′′) be its optimal

value.

Definition 7 An (α, β) approximation algorithm for the subproblem is an al-
gorithm that finds for any feasible instance (i, w′, w′′) a schedule that does not
start before time αti and ends before time αti+1, completes a total weight of at

least w′′, and for which
∑w′′

w=w′+1 C
w 6 αβSubi(w

′, w′′).

Note that the total weight w′′ is not approximated in the definition above.
For example, completing a total weight of (1− ǫ)w′′ is not sufficient to obtain a
PTAS.

Assume we have an (α, β)-approximation algorithmAlg for the subproblem.
Let Algi(w

′, w′′) be the value returned by the algorithm for instance (i, w′, w′′)
and let it be infinite if no solution was found. For any sequence of integers
0 ≤ ŵ1 6 · · · ≤ ŵΓ = W we get a pseudo schedule of total weighted completion
time

Γ
∑

i=1

Algi(ŵi−1, ŵi) 6 αβ
Γ
∑

i=1

Subi(ŵi−1, ŵi) (5)
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by concatenating the schedules Algi(ŵi−1, ŵi). Minimizing the left side of (5)
over all values 0 ≤ ŵ1 6 · · · ≤ ŵΓ = W is easy since they form a non-decreasing
sequence and the minimum can be computed by a simple dynamic program
similarl to what was done for the TRP. Let the values ŵi minimize the left
side of (5) and let wi be the total weight in the partial solution Opti. Then,
algorithm Alg finds a solution of total weighted completion time at most

αβ

Γ
∑

i=1

Subi(ŵi−1, ŵi) ≤ αβ

Γ
∑

i=1

Subi(wi−1, wi)

6 αβOpt
′ ≤ αβ(1 + ǫ)Opt.

The number of subproblems is O(Γn6) and given all approximate values, the
optimal values ŵi can be computes in O(Γn6) time. Further, the number of
choices for h0 is K (See Equation 1). Hence, it takes O(KΓn6) = Õ(n6 logn)
calls to the approximation algorithm for the subproblem to get an αβ(1 + ǫ)-
approximation for our scheduling problem.

5.2 Approximating the subproblem.

We show how to get a (1 + ǫ, 1 + ǫ)-approximation for the subproblem. In this
section, we fix an arbitrary subproblem with parameters i, w′, w′′ and fix an
optimal solution Sub

∗. Again, the first step is to partition the interval from ti
till ti+1 into K parts that we shall denote as slots. As before (Equation (3)), let

t
(h)
i = (1 + ǫ)hti, for h = 0, . . . ,K.

From now, the approach will differ from what we did for the TRP. The general
idea is as follows. Since the number of slots in a subschedule is a constant K,
and all weights and processing times are polynomially bounded, we can afford
to guess a lot of information about Sub

∗. We shall do this in such a way
that the remaining jobs can be scheduled greedily. For the ease of analysis, we
extend Sub

∗ by putting all unscheduled jobs at the end. We say that they are
scheduled in a virtual slot K +1. Now, for each job j we guess a set of possible
slots Sj ⊆ {1, 2, . . . ,K + 1} with the following properties:

(P1) Any job j in Sub
∗ completes in some slot in Sj . (It may start in an earlier

slot though.)

(P2) If j1 ≺ j2 then max(Sj1) 6 min(Sj2).

The first property is easily satisfied. For example, if we let Sj be the set of
all K + 1 slots for each j. The second property is implied by the interval order
precedence constraints as we shall prove in Lemma 6 below. After this lemma,
we prove that we get a PTAS for any class of precedence constraints for which
we can prove (P1) and (P2) and for which we may restrict to polynomially
bounded weights and processing times. Roughly speaking, the consequence of

18



(P1) and (P2) is that we only need to deal with precedence constraints within
a slot. However, within a slot any order of the jobs that satisfies the precedence
constraints is fine since all completion times are within a factor (1 + ǫ).

Lemma 6 For interval orders, we can guess sets Sj for j = 1, 2, . . . , n, that
satisfy properties (P1) and (P2).

Proof Let [lj , rj ] be the interval for job j in the interval order. As noted, we
may assume that the 2n values lj , rj are all different. For any h ∈ {1, . . . ,K+1},
let Jh be the set of jobs that complete in slot h in Sub

∗. Note that Jh may
be empty. For each non-empty set, guess the job jh with the largest value ljh ,

i.e., ljh = max{lj | j ∈ Jh} and define Sjh = {h}. (Note that there are nO(K)

possible guesses.) For any other job, the set Sj is defined as the unique maximal
subset of {1, . . . ,K + 1} that satisfies the following four necessary conditions.

(a) If for some h, the guess was Jh = ∅, then h /∈ Sj .

(b) If j ≺ jh for some slot h, then max(Sj) 6 h.

(c) If jh ≺ j for some slot h, then min(Sj) > h.

(d) If lj > Lh for some h, then h /∈ Sj .

(In (c), one might replace > h by > h+1 since h /∈ Sj follows from (d).) Assume
that we guessed all jobs jh correctly. Then, property (P1) follows directly since
the conditions (a)–(d) are clearly necessary. To prove (P2) assume that j1 ≺ j2.
We distinguish three cases:
Case 1: j2 = jh for some jh. It follows from (b) that max(Sj1 ) 6 h = min(Sj2 ),
since Sj2 = {h}.
Case 2: j1 = jh for some jh. It follows from (c) that min(Sj2) > h = max(Sj1 ),
since Sj1 = {h}.
Case 3: Now assume that j1, j2 6= jh for any jh. Let h = min(Sj2 ). Then by
(a), Jh 6= ∅. Then by (d), lj2 < ljh . It follows form j1 ≺ j2 that rj1 < lj2 < ljh ,
Hence, j1 ≺ jh and then (b) implies max(Sj1) 6 h = min(Sj2). �

Assume from now on that we have sets Sj satisfying (P1) and (P2).

Constructing the schedule We will construct a (1 + ǫ, 1 + ǫ)-approximate
schedule σ. The construction is done as follows. First, we assign each job j
to some slot in Sj . Jobs that are not assigned to any of the first K slots are
implicitly assigned to the virtual slot K + 1. The slots 1, 2, . . . ,K are placed
one after the other in this order, startingat time (1 + ǫ)ti, and within a slot the
jobs are placed in any arbitrary order that satisfies the precedence constraints.
By property (P2), the resulting schedule σ is guaranteed to be feasible. The
word slot is ambiguous here since the start and end time of slots in σ are not
fixed and do not match those of Sub∗. We will show however that in the final
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schedule σ, the end time of slot h is at most a factor 1 + ǫ larger than that of
slot h in Sub

∗.
Say that a job is large if its processing time is at least f(ǫ)ti, where f(ǫ) is

some function of ǫ to be specified later. Call it small otherwise. Since there can
only be a constant number (depending on ǫ) of large jobs scheduled in Sub

∗ we

• guess all large jobs together with the slot (1, . . . ,K) in which they complete
in Sub

∗ and assign a job to slot h in σ if it completes in slot h in Sub
∗.

It remains to assign the small jobs. Note that there are at most 2K+1 different
sets Sj . For any S ⊆ {1, . . . ,K + 1}, let JS = {j | Sj = S and j is small}.

• For every pair (S, h), with h ∈ {1, . . . ,K} we guess the total processing
time over all jobs j ∈ JS which complete in Sub

∗ in slot h. Let P (S, h)
be this value.

For each S ⊆ {1, . . . ,K +1} place the jobs in JS in non-decreasing order wj/pj
and do the following:

• For slots h = 1 to K, assign jobs from JS in order wj/pj to slot h until
the total processing time of jobs from JS assigned to h becomes at least
P (S, h) or until all jobs from JS are assigned.

Given this assignment of jobs to slots, we schedule jobs within each slot in
an arbitrary order that satisfies the precedence constraints. Note that there are
only Õ(1) large jobs and we can guess all of them together with their slots. Also,
the number of pairs (S, h) is 2K+1K = Õ(1) and for each pair, the number of
possible values P (S, h) is O(n3) since pj 6 n2 for all j. Hence, the total number

of choices for the guesses is nÕ(1). Let σ be the schedule that follows from
correct guesses about Sub∗.

Lemma 7 Schedule σ is a (1 + ǫ, 1 + ǫ)-approximation for the subproblem.

Proof By property (P2) and since we scheduled jobs within a slot in an order
satisfying the precedence constraint, the schedule is feasible.

Next we show that slot h in σ ends before time (1 + ǫ)t
(h)
i . Let Pσ(S, h)

be the total processing time of jobs from JS which are assigned to slot h in σ.
Further, let P (h) be the total processing time of jobs that complete in slot h in
Sub

∗ and let Pσ(h) be the total processing time of jobs assigned to slot h in σ.
Remember that a job is small if its processing time is at most f(ǫ)ti. By the
greedy assignment of small jobs we have that

Pσ(S, h) 6 P (S, h) + f(ǫ)ti.

The number of possible sets S is 2K+1. Now, take f(ǫ) = ǫ2 · 2−(K+1). Then,

Pσ(h) 6 P (h) + 2K+1f(ǫ)ti = P (h) + ǫ2ti.

Slot 1 in Sub
∗ has length ǫti and the total processing time assigned to slot 1

is at most P (1) + ǫ2ti 6 ǫti + ǫ2ti = (1 + ǫ)ǫti. Slot 1 is the smallest slot in
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Sub
∗. Hence, in general, the total time assigned to the first h slots is at most

(1 + ǫ) times the length of the first h slots in Sub
∗. That means, slot h in σ

ends before time (1 + ǫ)ti + (1 + ǫ)(t
(h)
i − ti) = (1 + ǫ)t

(h)
i .

Next, we prove the bound on the value of the schedule σ. Take arbitrary
S ⊆ {1, . . . ,K + 1}. If Sub∗ completes a total weight w of jobs form JS by the
end of slot h, then our schedule will have completed at least the same weight
of jobs form JS by the end of slot h too, since we scheduled the jobs in wj/pj
order. For any w ∈ {1, . . . , w′′}, let C∗w be the time at which Sub

∗ completes a
total weight of at least w. Consider arbitrary w and assume that time C∗w falls
in slot h. Then our schedule completes a total weight of at least w before the

end time of slot h. Hence, before time (1+ ǫ)t
(h)
i = (1+ ǫ)2t

(h−1)
i < (1+ ǫ)2C∗w.

In particular, this applies to any w ∈ {w′ + 1, . . . , w′′}. Hence,

Algi(w
′, w′′) 6 (1 + ǫ)2Subi(w

′, w′′).

�

The PTAS for interval ordered precedence constraints can easily be adjusted
to deal with release dates. First, the release dates may be rounded such that
jobs are released at the beginning of slots. Next, the release date restrictions
are added to the sets Sj as defined in the proof of Lemma 6. The rest remains
the same.
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